The Horn Mountain Production Spar was installed in 5,400 feet of water in June 2002. This was the deepest floating production unit at that time. A comprehensive instrumentation program was initiated to measure spar and riser responses (Edwards et al, DOT 2003). The present paper discusses the results of these measurements and comparison with analytical predictions of spar behavior during two selected events, hurricane Isidore in September 2002 and a summer storm in August 2003. Particular attention has been placed on the slowly varying surge and pitch motions and the importance of coupling with risers and mooring on hull motions. Our conclusion is that uncoupled analytical models for spar behavior predict accurately the wave frequency responses, however riser coupling has an influence on the slowly varying responses. This conclusion is consistent with earlier measurements of classic spar behavior (Gupta et al, OTC 2000, Prislin et al, OTC 1999).
Installing a large deck onto a platform, such as a spar, using the floatover method is gaining popularity. This is because the operational cost is much lower than other methods of installation, such as modular lifts or a single piece installation by a heavy lift barge. Deck integration can be performed on land, at quay side and will not depend on a heavy lift barge. A new concept for a floatover vessel has been developed for operations in the Gulf of Mexico and West Africa. In this application sea state conditions are essential factors that must be considered in the Gulf of Mexico, especially for transportation. In West Africa, swell conditions will govern floatover deck (FOD) installation. Based on these two different environmental conditions, Technip Offshore Engineering developed the FOD installation concept using semi-submersible barge type vessels. A significant amount of development work and model testing has been done on this method in recent years on spar floatover. These tests have validated our numerical methods. Another test was conducted to investigate the feasibility of a deck float-over operation onto a compliant tower for the Benguela Belize (BBT) project. The BBT project consists of a compliant tower supporting a 25,401 metric ton (28,000 s. ton) integrated deck. This paper will describe comparisons between model test data and numerical predictions of the compliant tower floatover operation.
The Horn Mountain Production Spar was installed in 5,400 feet of water in June 2002. This was the deepest floating production unit at that time. A comprehensive instrumentation program was initiated to measure spar and riser responses (Edwards et al, DOT 2003), while motion comparisons were presented on previous publication (Halkyard et al, OMAE 2004). The present paper discusses the results of these measurements and compares with analytical predictions of spar mooring tension during hurricane Isidore in September 2002. Particular attention has been placed on the importance of Coulomb friction between wire chain and the fairlead bearing to the dynamic tension of mooring lines. Mooring tensions were measured at chain jack location (inboard tension), while analytical models computed those tensions at the fairlead location (outboard tension). Our conclusion is that there is excellent agreement between field measurements and computed tensions at the chain jacks when fairlead friction is included, and when the vessel motions are accurately predicted. Ignoring fairlead friction results in a slightly conservative estimate for the tension at the chain jack. This has been the standard practice in all spar designs to date.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.