This study characterizes the regional changes in vascularity, which accompanies chronic progressive hydrocephalus. Fifteen dogs underwent surgical induction of hydrocephalus and were used for histologic studies. Animals were divided into 4 groups: surgical control, short term (< or = 5 weeks), intermediate term (8 weeks), and long term (10 to 12 weeks). Vessel diameter, density, and luminal area were calculated by imaging quantification after manual vessel identification in the cortical gray, white matter, and caudate nucleus. Capillary vessel diameter decreased 23.5% to 30.2% (P < 0.01) in the caudate, but then returned to normal at 12 weeks. Capillary vessel density decreased 53.5% (P < 0.05) in the cortical gray, but then increased to 234.8% (P < 0.01) over surgical controls at 12 weeks. There was no initial decrease in capillary density in the caudate; however, the long-term group capillary density was significantly greater (172.8% to 210.5%, P < 0.01) than surgical controls. Overall, there was a short-term decrease in lumen area, with recovery in the longer term. Glial fibrillary acidic protein (GFAP) immunohistochemistry demonstrated the pattern of GFAP staining and reactive astrocytes differed in the caudate compared with the occipital cortex. This data suggest that an increase in capillary density and diameter may be an adaptive process allowing maintenance of adequate cerebral perfusion and metabolic support in the hypoxic environment of chronic hydrocephalus.
In the large canine model of acquired obstructive hydrocephalus that we have developed recently, computer-assisted 3-dimensional morphometry has been performed on T1-weighted Spin Echo MRI images from adult dogs before and after the induction of hydrocephalus. To date, 7 hydrocephalic animals have been analyzed that survived 7-83 days (median = 54) after receiving injections of cyanoacrylate glue into the anterior fourth ventricle. Measurements were obtained from lateral, 3rd, and 4th ventricles. The volumes of the left and right lateral ventricles were symmetrical before and after induction. Mean lateral ventricle volume increased 424% from a baseline of 0.63 cc to a post-induction value of 3.30 cc (p < 0.01 with unpaired t-test). In contrast, the 3rd ventricle expanded 187% from a mean of 0.15 cc to 0.43 cc (p < 0.05). The combined volume of the lateral and 3rd ventricles increased 369% from a mean of 0.78 cc to 3.69 cc (p < 0.01). Evans' ratios, which are used routinely in the clinical setting, were also obtained from linear measurements of the lateral ventricle width divided by brain width at the level of the foramen of Monro. These values exhibited only a 94% increase from mean baseline ratios of 0.17 to post-induction ratios of 0.33 (p < 0.05). These findings indicate that in mechanically-induced obstructive hydrocephalus the relative expansion of the lateral ventricles is greater than that of the 3rd ventricle. In addition, volumetric measurements of the lateral and 3rd ventricles suggest that the extent of ventriculomegaly is 3-4 times greater than estimated by Evans' ratios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.