Objective: In this study, biodegradable Chitosan Ascorbate Microsphere (CAMs) and mannosylated chitosan ascorbate microsphere (m-CAMs) prepared for targeting towards alveolar macrophages to treatment of pulmonary tuberculosis.
Significance: Ascorbic acid is an antioxidant and reported killing effect on mycobacterium by induces fenton reaction. This study enlightens the possible benefits of adding antioxidant properties of ascorbic acid with chitosan microsphere to an anti-tuberculosis regimen and mannosylation of microsphere significantly induce the targetability of antitubercular drug to alveolar macrophages.
Methods: CAMs prepared by firstly salification of chitosan by ascorbic acid then ionic gelation with STPP and m-CAMs prepared by incubation method and purified for further studies. The physicochemical, in vitro and in vivo characterizations of both formulations were carried out.
Results: The size of microspheres (both CAMs and m-CAMs) were found to be in range of 3.40-4.81µm. Evident changes were observed in crystallinity and structure of both carrier systems and depicted by Fourier transform infrared (FTIR), Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) studies. In vitro lung deposition study of microspheres showed favourable aerodynamic properties for deep lung delivery (MMAD 2.0- 3.8 μm) and, thus, show potential for an application as inhalable tuberculosis therapy. The drug release showed the biphasic pattern of release, i.e., initial burst (30-45% up to 8 h) followed by a slower sustained release pattern (more than 80% up to 72 h) in both simulated lung fluids. Optimized formulations exhibited lower cytotoxicity and bio distribution studies demonstrated the efficiency of m-CAMs for spatial delivery of INH to alveolar tissues. CAMs and m-CAMs evidenced minor cytotoxicity on lung epithelial cells (A549 cell lines).
Conclusion: m-CAMs thus has a promising potential to be explore as an effective carrier system for delivery of antitubercular drugs regimen.
Key words: Targetability, alveolar macrophage, lung cancer A549 cells
The objective of present research work was to develop methotrexate loaded chitosan anchored shell nanoparticles for drug delivery in breast cancer. Chitosan nanoparticles (CS-NPs) were synthesized by ionic gelation of chitosan using sodium tripolyphosphate (STPP). The optimized nanoparticles were characterized for particle size and polydispersity index (PDI) revealed particle size were found to be between 57.08 nm to169.5 nm and PDI 0.252 to 0.639 respectively. The results signpost that stirring speed during ionic gelation reaction was also decisive parameters for the size of the nanoparticles obtained. Further characterization involved to show polymer-drug interaction was FTIR and DSC. This paper grants a revision of the physical factors elaborate in attaining nanoparticles in order to regulate the particle size of polymeric nanoparticles made from chitosan, without any surplus chemical treatment.
Keywords: Breast cancer, Nanoparticles, Chitosan, Methotrexate
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.