Background:Cuminum cyminum Linn. (Umbelliferae), commonly known as Jeera. It is native from mediterranean region, but today widely cultivated in Asian countries. It has been reported to possess various medicinal properties and an important food ingredient. The seed of the plant are claimed for treatment of diarrhoea by various traditional practitioners.Objectives:Hence, the present investigation was undertaken to evaluate aq. extract of C. cyminum seeds (ACCS) against diarrhoea on albino rats.Materials and Methods:The animals were divided into five groups and the control group was applied with 2% acacia suspension, the standard group with loperamide (3 mg/kg) or atropine sulphate (5mg/kg) and three test groups administered orally with 100, 250 and 500 mg/kg of ACCS. The antidiarrhoeal effect was investigated by castor oil induce diarrhoea model, prostaglandin E2 (PGE2) induced enteropooling model, intestinal transit by charcoal meal test.Results:The ACCS showed significant (P < 0.001) inhibition in frequency of diarrhoea, defecation time delaying, secretion of intestinal fluid as well as intestinal propulsion as compared to control and the graded doses of tested extract followed dose dependent protection against diarrhoea.Conclusions:The study reveals that the ACCS is a potent antidiarrhoeal drug which supports the traditional claim.
The objective of the present study is to develop colon targeted drug delivery system using dextrin (polysaccharide) as a carrier for Azathioprine. Microspheres containing azathioprine, dextrin and various excipients were prepared by solvent evaporation technique. The prepared microsphere were evaluated by different methods parameters like particle size, drug entrapment efficiency, percentage yield, shape and surface morphology and in vitro drug release study. Drug release profile was evaluated in simulated gastric, intestinal fluid and simulated colonic fluid. Best formulation was decided on the basis drug release profile in simulated gastric, intestinal fluid and simulated colonic fluid. In dextrin based microspheres, dextrin as a carrier was found to be suitable for targeting of Azathioprine for local action in the site of colon. Dextrin microspheres released 95-99% of azathioprine in simulated colonic fluid with 4% human fecal matter solution. The results of in-vitro studies of the azathioprine microspheres indicate that for colon targeting dextrin are suitable carriers to deliver the drug specifically in the colonic region. Dextrin based azathoprine microspheres showed no significance change in particle size and % residual upon storage at 5 ± 3ºC, 25 ± 2ºC/60 ± 5% RH (room temperature) and 40 ± 2ºC/75 ±5%RH humidity for three months.
Keywords: azathioprine, microsphere, dextrin, colon specific drug delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.