Quality evaluation of underwater images is a key goal of underwater video image retrieval and intelligent processing. To date, no metric has been proposed for underwater color image quality evaluation (UCIQE). The special absorption and scattering characteristics of the water medium do not allow direct application of natural color image quality metrics especially to different underwater environments. In this paper, subjective testing for underwater image quality has been organized. The statistical distribution of the underwater image pixels in the CIELab color space related to subjective evaluation indicates the sharpness and colorful factors correlate well with subjective image quality perception. Based on these, a new UCIQE metric, which is a linear combination of chroma, saturation, and contrast, is proposed to quantify the non-uniform color cast, blurring, and low-contrast that characterize underwater engineering and monitoring images. Experiments are conducted to illustrate the performance of the proposed UCIQE metric and its capability to measure the underwater image enhancement results. They show that the proposed metric has comparable performance to the leading natural color image quality metrics and the underwater grayscale image quality metrics available in the literature, and can predict with higher accuracy the relative amount of degradation with similar image content in underwater environments. Importantly, UCIQE is a simple and fast solution for real-time underwater video processing. The effectiveness of the presented measure is also demonstrated by subjective evaluation. The results show better correlation between the UCIQE and the subjective mean opinion score.
Data collected from clinical trials and cohort studies, such as dementia studies, are often high-dimensional, censored, heterogeneous and contain missing information, presenting challenges to traditional statistical analysis. There is an urgent need for methods that can overcome these challenges to model this complex data. At present there is no cure for dementia and no treatment that can successfully change the course of the disease. Machine learning models that can predict the time until a patient develops dementia are important tools in helping understand dementia risks and can give more accurate results than traditional statistical methods when modelling high-dimensional, heterogeneous, clinical data. This work compares the performance and stability of ten machine learning algorithms, combined with eight feature selection methods, capable of performing survival analysis of high-dimensional, heterogeneous, clinical data. We developed models that predict survival to dementia using baseline data from two different studies. The Sydney Memory and Ageing Study (MAS) is a longitudinal cohort study of 1037 participants, aged 70–90 years, that aims to determine the effects of ageing on cognition. The Alzheimer's Disease Neuroimaging Initiative (ADNI) is a longitudinal study aimed at identifying biomarkers for the early detection and tracking of Alzheimer's disease. Using the concordance index as a measure of performance, our models achieve maximum performance values of 0.82 for MAS and 0.93 For ADNI.
The current state of computer vision methods applied to autism spectrum disorder (ASD) research has not been well established. Increasing evidence suggests that computer vision techniques have a strong impact on autism research. The primary objective of this systematic review is to examine how computer vision analysis has been useful in ASD diagnosis, therapy and autism research in general. A systematic review of publications indexed on PubMed, IEEE Xplore and ACM Digital Library was conducted from 2009 to 2019. Search terms included [‘autis*’ AND (‘computer vision’ OR ‘behavio* imaging’ OR ‘behavio* analysis’ OR ‘affective computing’)]. Results are reported according to PRISMA statement. A total of 94 studies are included in the analysis. Eligible papers are categorised based on the potential biological/behavioural markers quantified in each study. Then, different computer vision approaches that were employed in the included papers are described. Different publicly available datasets are also reviewed in order to rapidly familiarise researchers with datasets applicable to their field and to accelerate both new behavioural and technological work on autism research. Finally, future research directions are outlined. The findings in this review suggest that computer vision analysis is useful for the quantification of behavioural/biological markers which can further lead to a more objective analysis in autism research.
Summary Segmentation of organs and structures, as either targets or organs‐at‐risk, has a significant influence on the success of radiation therapy. Manual segmentation is a tedious and time‐consuming task for clinicians, and inter‐observer variability can affect the outcomes of radiation therapy. The recent hype over deep neural networks has added many powerful auto‐segmentation methods as variations of convolutional neural networks (CNN). This paper presents a descriptive review of the literature on deep learning techniques for segmentation in radiation therapy planning. The most common CNN architecture across the four clinical sub sites considered was U‐net, with the majority of deep learning segmentation articles focussed on head and neck normal tissue structures. The most common data sets were CT images from an inhouse source, along with some public data sets. N‐fold cross‐validation was commonly employed; however, not all work separated training, test and validation data sets. This area of research is expanding rapidly. To facilitate comparisons of proposed methods and benchmarking, consistent use of appropriate metrics and independent validation should be carefully considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.