Quality evaluation of underwater images is a key goal of underwater video image retrieval and intelligent processing. To date, no metric has been proposed for underwater color image quality evaluation (UCIQE). The special absorption and scattering characteristics of the water medium do not allow direct application of natural color image quality metrics especially to different underwater environments. In this paper, subjective testing for underwater image quality has been organized. The statistical distribution of the underwater image pixels in the CIELab color space related to subjective evaluation indicates the sharpness and colorful factors correlate well with subjective image quality perception. Based on these, a new UCIQE metric, which is a linear combination of chroma, saturation, and contrast, is proposed to quantify the non-uniform color cast, blurring, and low-contrast that characterize underwater engineering and monitoring images. Experiments are conducted to illustrate the performance of the proposed UCIQE metric and its capability to measure the underwater image enhancement results. They show that the proposed metric has comparable performance to the leading natural color image quality metrics and the underwater grayscale image quality metrics available in the literature, and can predict with higher accuracy the relative amount of degradation with similar image content in underwater environments. Importantly, UCIQE is a simple and fast solution for real-time underwater video processing. The effectiveness of the presented measure is also demonstrated by subjective evaluation. The results show better correlation between the UCIQE and the subjective mean opinion score.
A group of kurtosis-guided-grams, such as Kurtogram, Protrugram and SKRgram, is designed to detect the resonance band excited by faults based on the sparsity index. However, a common issue associated with these methods is that they tend to choose the frequency band with individual impulses rather than the desired fault impulses. This may be attributed to the selection of the sparsity index, kurtosis, which is vulnerable to impulsive noise. In this paper, to solve the problem, a sparsity index, called the Gini index, is introduced as an alternative estimator for the selection of the resonance band. It has been found that the sparsity index is still able to provide guidelines for the selection of the fault band without prior information of the fault period. More importantly, the Gini index has unique performance in random-impulse resistance, which renders the improved methods using the index free from the random impulse caused by external knocks on the bearing housing, or electromagnetic interference. By virtue of these advantages, the improved methods using the Gini index not only overcome the shortcomings but are more effective under harsh working conditions, even in the complex structure. Finally, the comparison between the kurtosis-guided-grams and the improved methods using the Gini index is made using the simulated and experimental data. The results verify the effectiveness of the improvement by both the fixed-axis bearing and planetary bearing fault signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.