In this paper, we proposed an online 2D localization method for tracking of dynamic moving brain sources. For this purpose, we used an adaptive version of PARAllel FACtor (PARAFAC) analysis for factorization of electroencephalographic (EEG) signals. We utilized Boundary Element Method (BEM) with four layers to solve the forward problem for the simulated EEG signals caused by two moving dipoles within the brain. Then, we created an appropriate tensor built by second order statistics of EEG signals. We adopted an online method to brain source localization called the Recursive Least Squares Tracking (RLST) as an adaptive PARAFAC algorithm with two windowing schemes. Finally, we evaluated the performance of the method applied to EEG signals.
Sparse component analysis is very popular in solving underdetermined blind source separation (UBSS) problem. Here, we propose a new underdetermined blind identification (UBI) approach for estimation of the mixing matrix in UBSS. Previous approaches either rely on single dominant component or consider k ≤ m − 1 active sources at each time instant, where m is the number of mixtures, but impose constraint on the level of noise replacing inactive sources. Here, we propose an effective, computationally less complex, and more robust to noise UBI approach to tackle such restrictions when k = m − 1 based on a two-step scenario: (1) estimating the orthogonal complement subspaces of the overall space and (2) identifying the mixing vectors. For this purpose, an integrated algorithm is presented to solve both steps based on Gram-Schmidt process and random sample consensus method. Experimental results using simulated data show more effectiveness of the proposed method compared with the existing algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.