The influence of salinity on the single and binary sorption of Ni and Zn onto iron oxide- and manganese oxide-coated sand (IOCS and MOCS) was investigated at pH = 5. The single sorption experimental data were fitted to Freundlich, Langmuir, Dubinin–Radushkevich, and Sips models, and a nonlinear sorption isotherm was observed (NF = 0.309–0.567). The higher Brunauer–Emmett–Teller (BET) surface area (ABET) and cation exchange capacity (CEC) of MOCS contributed to the higher maximum sorption capacities (qmL) of Ni and Zn than that of IOCS. The Ni sorption capacities in the single sorption were higher than that in the binary sorption, while the Zn sorption capacities in the single sorption were less than that in the binary sorption. The single and binary sorptions onto both IOCS and MOCS were affected by the salinity, as indicated by the decrease in sorption capacities. Satisfactory predictions were shown by the binary sorption model fitting including P-factor, ideal adsorbed solution theory (IAST)–Freundlich, IAST–Langmuir, and IAST–Sips; among these, the P-factor model showed the best fitting results in predicting the influence of salinity of Ni and Zn in the binary sorption system onto IOCS and MOCS. IOCS and MOCS offer a sustainable reactive media in a permeable reactive barrier (PRB) for removing Ni and Zn in the presence of salinity.
Antibiotic contaminants, which are generally present in bi-solute systems, can be competitively adsorbed onto clays. Single- and bi-solute sorptions of sulfadiazine (SDZ) and ciprofloxacin (CIP) onto montmorillonite and kaolinite were investigated at pH values of 5 and 8. Freundlich and Langmuir models were used and fit the experimental data well for single-solute sorption. The sorption isotherms were nonlinear (N = 0.265-0.730), and the maximum sorption capacities (q) of the SDZ and CIP onto montmorillonite were higher than those onto kaolinite. The octanol-water distribution ratio (D), cation exchange capacity (CEC), Brunauer-Emmett-Teller (BET) surface area (A), pore size, point of zero charge (pH), and basal spacing predominantly affected the Freundlich constant (K) and q of SDZ and CIP at pH 5 more than SDZ and CIP at pH 8. For bi-solute sorption, the presence of CIP inhibited the SDZ sorption onto montmorillonite and kaolinite. Competitive sorption models such as Sheindorf-Rebhun-Sheintuch (SRS), Murali-Aylmore (M-A) and the modified extended Langmuir model (MELM) were used; of these, the MELM provided the best prediction with SDZ sorption onto montmorillonite at pH 8 and CIP onto kaolinite at pH 5 and 8 in SDZ/CIP system occurring synergistically, whereas others occurred antagonistically. The distribution coefficient (K) of the bi-solute sorption decreased with increasing pH in the order cationic > neutral > anionic for SDZ and cationic > zwitterionic > anionic for CIP, which resembled the K of single-solute sorption. Fourier transform infrared spectroscopy (FT-IR) spectra indicated that amine in SDZ and keto oxygen in CIP were responsible for the interactions with the montmorillonite and kaolinite.
The salinity influence on the adsorptions of Ni and Zn onto phosphate-intercalated nano montmorillonite (PINM) were investigated. Single adsorption isotherm models fitted the single adsorption data well. The adsorption capacity of Ni was higher than that of Zn onto PINM at different salinities. The single adsorption parameters from Langmuir model (QmL and bL) were compared with the binary adsorption ( and ). The of Zn was lower than that of Ni. The simultaneous presence of Ni and Zn decreased the adsorption capacities. The single and binary adsorptions onto PINM were affected by the salinity. The competitive Langmuir model (CLM), P-factor, Murali and Aylmore (MA) models, and ideal adsorbed solution theory (IAST) were satisfactory in predicting the binary adsorption data; the CLM showed the best fitting results. Our results showed that the PINM can be used as an active Ni and Zn adsorbent for a permeable reactive barrier (PRB) in the remediation of saline groundwater.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.