Chordomas are rare tumors of notochordal origin, most commonly arising in the sacrum or skull base. Chordomas are considered insensitive to conventional chemotherapy, and their rarity complicates running timely and adequately powered trials to identify effective treatments. Therefore, there is a need for discovery of novel therapeutic approaches. Patient-derived organoids can accelerate drug discovery and development studies and predict patient responses to therapy. In this proof-of-concept study, we successfully established organoids from seven chordoma tumor samples obtained from five patients presenting with tumors in different sites and stages of disease. The organoids recapitulated features of the original parent tumors and inter- as well as intrapatient heterogeneity. High-throughput screenings performed on the organoids highlighted targeted agents such as PI3K/mTOR, EGFR, and JAK2/STAT3 inhibitors among the most effective molecules. Pathway analysis underscored how the NF-κB and IGF-1R pathways are sensitive to perturbations and potential targets to pursue for combination therapy of chordoma.
How can you combine professional-quality research with discovery-based undergraduate education? The UCLA Undergraduate Consortium for Functional Genomics provides the answer
We examine if the rate promoting vibration of lactate dehydrogenase is a preferred axis of thermal energy transfer. While it seems plausible that such a mechanistically important motion is also a favored direction of energy transfer, none of the previous studies of rate promoting vibrations in enzymatic catalysis have addressed this question. It is equally likely that the promoting vibration, though catalytically important, has no different properties than any other axis in the protein. Resolution of this issue is important for two reasons: First, if energy is transferred along this axis in a preferred fashion, it shows that the protein is engineered in a way that transfers thermal energy into a motion that is coupled to the chemical step. Second, the discovery of a preferred direction of thermal transfer provides a potential route to experimental verification of the promoting vibration concept. Our computational experiments are specifically designed to mimic potential laser experiment with the deposition of thermal energy in an active site chromophore with subsequent measurement of temperature at various points in the protein. Our results indicate that the promoting vibration is indeed a preferred channel of energy transfer. In addition, we study the vibrational structure of the protein via the dynamical structure factor to show preferred vibrational motion along the promoting vibration axis is an inherent property of the protein structure via thermal fluctuations.
Using a large consortium of undergraduate students in an organized program at the University of California, Los Angeles (UCLA), we have undertaken a functional genomic screen in the Drosophila eye. In addition to the educational value of discovery-based learning, this article presents the first comprehensive genomewide analysis of essential genes involved in eye development. The data reveal the surprising result that the X chromosome has almost twice the frequency of essential genes involved in eye development as that found on the autosomes.
With the new WHO classification, discrete entities of PTCL are now being identified by molecular and phenotypic markers. This new classification is critical to our ability to define disease entities which may respond to certain classes of targeted therapy. Some such mutations include genes controlling epigenetics (TET2, IDH2, DNMT3A, RHOA, CD28). As such, epigenetic therapies such as histone deacetylase (HDAC) inhibitors have become the platform to which other novel therapies or chemotherapy has been added. Early phase clinical studies have demonstrated that combination therapy with romidepsin plus other agents known to have activity in T cell lymphoma have enhanced clinical benefit for this group of diseases. In addition, the antibody drug conjugate, brentuximab vedotin has been shown to have potent activity in T cell lymphomas expressing CD30. This drug is being studied as well with other targeted therapies and chemotherapy in an effort to improve response rates and progression-free survival. Although T cell lymphomas remain a highly challenging group of diseases to treat, new efforts to leverage drugs that discretely target the biology that drives T cell lymphomagenesis in combination provide hope that improved outcomes may be realized in the near future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.