Nipah virus (NiV) is extremely pathogenic in nature, recently emerged paramyxovirus that has been dependable for scattered outbreaks of metastasis and encephalitic ill health in Southeast Asia. The multiplied urbanization and dynamic climate have led to rising in epidemics with incidences of recent diseases disturbing human health per annum. Most of these are zoonotic. Nipah V irus Encephalitis (NVE) is one such example that is caused by bats (flying foxes). NiV may be a new detected extremely pathogenic virus with the capability to cause devastating morbidity and mortality (an expected 100% in some cases) rate among the human populations. The illness was recorded within the sort of a significant outbreak in the Republic of India in the year of 2001 and then a tiny low incidence in the year of 2007, each the outbreaks in West Bengal only in humans without any involvement of pigs. About 1.1 million pigs had to be damaged to control the outbreak. The infection transmission from pigs acting as an intermediate host throughout Malaysian and Singapore outbreaks has adapted in NIV outbreaks in Republic of India and Bangladesh, transmission of the disease directly from bats to human followed by an individual to person. The drinking of raw date palm sap contaminated with fruit bat urine or saliva containing NiV that the only known cause of an outbreak of the disease in Bangladesh outbreaks. High death rates have also been related to recent outbreaks in Malaysia and Bangladesh.
Since December 2019, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been a global health concern. The transmission method is human-to-human. Since this second wave of SARS-CoV-2 is more aggressive than the first wave, rapid testing is warranted to use practical diagnostics to break the transfer chain. Currently, various techniques are used to diagnose SARS-CoV-2 infection, each with its own set of advantages and disadvantages. A full review of online databases such as PubMed, EMBASE, Web of Science, and Google Scholar was analyzed to identify relevant articles focusing on SARS-CoV-2 and diagnosis and therapeutics. The most recent article search was on May 10, 2021. We summarize promising methods for detecting the novel Coronavirus using sensor-based diagnostic technologies that are sensitive, cost-effective, and simple to use at the point of care. This includes loop-mediated isothermal amplification and several laboratory protocols for confirming suspected 2019-nCoV cases, as well as studies with non-commercial laboratory protocols based on real-time reverse transcription-polymerase chain reaction and a field-effect transistor-based bio-sensing device. We discuss a potential discovery that could lead to the mass and targeted SARS-CoV-2 detection needed to manage the COVID-19 pandemic through infection succession and timely therapy.
Human Coronaviruses (HCoV) exhibit positive single stranded RNA genome with enveloped nucleocapsid. Coronavirus belongs to the family Coronaviridae, originated from avian and mammalian species causes upper respiratory tract infection in humans by novel HCoVs viruses named as HCoV-HKU1, HCoV-NL63 but predominant species is Middle East respiratory syndrome (MERS-CoV) across the world. HCoV-HKU1 sp. is associated with chronic pulmonary disease, while HCoV-NL63 causes upper and lower respiratory tract disease in both children and adults, but most recent one was MERS-CoV, which caused acute pneumonia and occasional renal failure. The novel coronavirus SARS-CoV-2 is a new strain that causes the Coronavirus Disease 2019 (COVID-19) as named by the World Health Organization. According to the recent world statistics report about the COVID-19 cases approx. 101,500 confirmed cases and 3,500 death cases appeared. And mostly, a case of infection with CoV was identified in Wuhan, China. Structurally viral genome constitutes of 2/3rd of replicase gene encoding ORFs regions and rest of the 1/3rd region of genome form the structural proteins. The aim of the study was to understand the viral genetic systems in order to facilitate the genetic manipulation of the viral genome and to know the fundamental mechanism during the viral replication, facilitating the development of antidotes against the virus.
Since its sudden outbreak in December 2019 in Wuhan, A pandemic of SARS-CoV-2 has been announced. Vitamin C is a water-soluble vitamin with anti-oxidant and immunity-boosting properties. Vitamin C acts as a nutritional supplement profoundly impacting the immune response to the second or third wave of the coronavirus disease (COVID-19). Vitamin C efficacy as an adjuvant treatment for inflammation and symptoms associated with COVID-19 infection should be investigated further. This report sheds light on the available information on the current clinical trials and pharmacotherapy related to COVID-19. Information available on Pubmed, EMBASE, Scopus, Web of Science databases and EU clinical trials regarding the use of therapeutic agents in patients with COVID-19 was used to perform analysis. Data was taken from 18 clinical trials available in the U.S. National Library of Medicine. All trials that are active, completed, or in the process of recruiting are included in data. Because of majority of clinical trials are still ongoing, specific results and high-quality clinical evidence are lacking. Before being standardised for use, the protocol must undergo large randomised clinical studies using a variety of existing medications and potential therapies. The pivotal role played by vitamins C in maintaining our immune system, is quite apparent. This review is an attempt to summarize the available information regarding the use of vitamin C as an adjuvant therapy in COVID-19 patients.
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a new enveloped RNA virus known as Coronavirus (COVID-19) are most prevalent in humans and wild animals. All four species that is alpha, beta, delta and theta have been identified till date and are responsible for human disease; causing influenza like illness (ILI). This virus has similar lineage of Middle East Respiratory Syndrome coronavirus (MERS-CoV) and related Coronavirus (SARS-CoV). This outbreak initially presented as pneumonia-like illness in a group of people in Wuhan, China. The infection was said to be caused by seafood and unusual animals in the wholesale markets of this city. SARS-CoV-2 is highly infectious and has resulted in a rapid pandemic. As of now it has spread to 197 countries with total no of cases in the world being 3.76 million as of early march. The mortality till now is 7.11% .The cases have been increasing since its first discovery in China. In India also the number has been increased. Till now India has total of 39,980 cases and mortality is attributed to be 3.26%. As per data from Ministry of health and family welfare (MoHFW) death is more commonly seen in males with age >60years. Among these most of the deaths were related to other co-morbid conditions. This article will help the readers with an overview of novel Coronavirus spanning around the clinical features, diagnostic modalities, treatment strategies and infection control measures. It will also help in raising awareness among healthcare workers regarding COVID-19 and aid in early recognition of these patients. Moreover, this review will also focus on the most recent information for the effective management, prevention, and treatment of patients worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.