In this work, poly(acrylic acid) (PAA) and PAA/multi-walled carbon nanotube (MWNTs) nanofibrous membranes are fabricated by electrospinning to immobilize acetylcholinesterase (AChE).3-Aminopropyltriethoxysilane (APTES) and glutaraldehyde are used for surface modification and PAA membrane stabilization in aqueous media. The structure of the nanofibrous membrane was studied by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, thermogravimetric and mechanical analyses. The AChE enzyme was immobilized on the PAA nanofibers with different amounts of MWNTs concentrations from 0 to 5 wt%. The SEM images revealed that the average diameter of the PAA nanofibers was 226 AE 25 nm which was increased by increasing the MWNTs concentration. The tensile strength and modulus of the nanofibrous membranes increased by 1.87 and 4.39 fold respectively after a crosslinking process. The results show that membranes containing MWNTs are a more appropriate support for enzyme immobilization. In comparison to pure PAA, the activity of the sample containing 4 wt% of MWNTs was increased by 5.07 fold. Also, the immobilized enzyme showed excellent reusability even after 10 cycles of washing and samples maintained more than 90% of their original activities. Moreover, the pH and thermal stability of the immobilized enzyme was improved compared to the free enzyme. The results show that a PAA/MWNTs nanofibrous membrane could be counted as a suitable support for AChE immobilization in addition to different applications such as biosensor manufacturing.
Research in the field of tissue engineering, especially heart tissue engineering, is growing rapidly. Herein, the morphological, chemical, mechanical and biological properties of poly (caprolactone) (PCL)/poly (glycerol sebacate) (PGS) and PCL/PGS/graphene nanofibrous scaffolds are investigated. Initially, PGS pre-polymer is synthesized and characterized by nuclear magnetic resonance and Fourier transform infrared spectroscopies. Then, in order to use the benefits of PGS, this polymer is mixed with PCL. Blending PGS with PCL resulted in the enhancement of ultimate elongation and reduction in the elastic modulus due to the intrinsic properties of PGS. The hydrophobicity of PCL nanofibers is reduced by adding PGS as hydrophilic polymer (105 ± 3 vs. 44 ± 2 ). Also, the addition of graphene to the blend nanofibers is balanced the hydrophilicity. Degradation rate of pure PCL nanofibers is very slow but it is increased in the presence of PGS. All nanofibrous scaffolds are biocompatible and non-toxic. The highest cell adhesion (covered area = 0.916 ± 0.032) and biocompatibility (98.79 ± 1%) are related to PCL/PGS loaded with 1% wt of graphene (PCL/PGS/graphene 1 ). Thus, this sample can be a good candidate for further examinations of cardiac tissue engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.