Research in the field of tissue engineering, especially heart tissue engineering, is growing rapidly. Herein, the morphological, chemical, mechanical and biological properties of poly (caprolactone) (PCL)/poly (glycerol sebacate) (PGS) and PCL/PGS/graphene nanofibrous scaffolds are investigated. Initially, PGS pre-polymer is synthesized and characterized by nuclear magnetic resonance and Fourier transform infrared spectroscopies. Then, in order to use the benefits of PGS, this polymer is mixed with PCL. Blending PGS with PCL resulted in the enhancement of ultimate elongation and reduction in the elastic modulus due to the intrinsic properties of PGS. The hydrophobicity of PCL nanofibers is reduced by adding PGS as hydrophilic polymer (105 ± 3 vs. 44 ± 2 ). Also, the addition of graphene to the blend nanofibers is balanced the hydrophilicity. Degradation rate of pure PCL nanofibers is very slow but it is increased in the presence of PGS. All nanofibrous scaffolds are biocompatible and non-toxic. The highest cell adhesion (covered area = 0.916 ± 0.032) and biocompatibility (98.79 ± 1%) are related to PCL/PGS loaded with 1% wt of graphene (PCL/PGS/graphene 1 ). Thus, this sample can be a good candidate for further examinations of cardiac tissue engineering.
Nanofibrous membranes used for burn treatment have become widely popular due to their large surface area and high porous structure. In this study, electrospinning was used to fabricate a blended nanofibrous membrane of polyvinylidene pyrolidone (PVP) and gelatin, to use as wound dressing. The physical and mechanical properties of this novel membrane were investigated using SEM, FTIR and tensile tests. Results showed that poor mechanical properties of gelatin, which are preferred in medical applications for curing burns as they allow for antigen activity and skin repair, can be enhanced by adding PVP in the solution. Silver sulfadiazine (AgSD), an antibacterial agent, was also impregnated into the PVP/gelatin nanofibrous structure during electrospinning. The membrane thus fabricated showed antibacterial activities against both the Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. AgSD release behaviour of fabricated samples indicated short-term drug delivery. It was concluded that the proposed drug-loaded membrane can be used as wound dressing, specifically, in treating skin burns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.