Multicasting is emerging as an enabling technology for multimedia transmissions over wireless networks to support several groups of users with flexible quality of service (QoS) requirements. Although multicast has huge potential to push the limits of next generation communication systems; it is however one of the most challenging issues currently being addressed. In this survey, we explain multicast group formation and various forms of group rate determination approaches. We also provide a systematic review of recent channel-aware multicast scheduling and resource allocation (MSRA) techniques proposed for downlink multicast services in OFDMA based systems. We study these enabling algorithms, evaluate their core characteristics, limitations and classify them using multidimensional matrix. We cohesively review the algorithms in terms of their throughput maximization, fairness considerations, performance complexities, multi-antenna support, optimality and simplifying assumptions. We discuss existing standards employing multicasting and further highlight some potential research opportunities in multicast systems.
Variations in electricity tariffs arising due to stochastic demand loads on the power grids have stimulated research in finding optimal charging/discharging scheduling solutions for electric vehicles (EVs). Most of the current EV scheduling solutions are either centralized, which suffer from low reliability and high complexity, while existing decentralized solutions do not facilitate the efficient scheduling of on-move EVs in large-scale networks considering a smart energy distribution system. Motivated by smart cities applications, we consider in this paper the optimal scheduling of EVs in a geographically large-scale smart energy distribution system where EVs have the flexibility of charging/discharging at spatially-deployed smart charging stations (CSs) operated by individual aggregators. In such a scenario, we define the social welfare maximization problem as the total profit of both supply and demand sides in the form of a mixed integer non-linear programming (MINLP) model. Due to the intractability, we then propose an online decentralized algorithm with low complexity which utilizes effective heuristics to forward each EV to the most profitable CS in a smart manner. Results of simulations on the IEEE 37 bus distribution network verify that the proposed algorithm improves the social welfare by about 30% on average with respect to an alternative scheduling strategy under the equal participation of EVs in charging and discharging operations. Considering the best-case performance where only EV profit maximization is concerned, our solution also achieves upto 20% improvement in flatting the final electricity load. Furthermore, the results reveal the existence of an optimal number of CSs and an optimal vehicle-to-grid penetration threshold for which the overall profit can be maximized. Our findings serve as guidelines for V2G system designers in smart city scenarios to plan a cost-effective strategy for large-scale EVs distributed energy management.INDEX TERMS Electric vehicle-to-grid (V2G), distributed energy management, mixed integer non-linear programming, greedy-based algorithm, smart cities.
The spreading dynamics and control of infectious agents primarily depend on the connectivity properties of underlying networks. Here, we investigate the stability of a susceptibleinfected-susceptible epidemic model incorporated with multiple infection stages and propagation vectors to mimic malware behavior over scale-free communication networks. In particular, we derive the basic reproductive ratio (R 0 ) and provide results for stability analysis at infection-free and infection-chronic equilibrium points. Based on R 0 , the effectiveness of four prevailing immunization strategies as countermeasures is studied and compared. The outperformance of proportional and targeted immunization is justified via numerical results.Index Terms-Malware modeling, epidemiology, scale-free network, basic reproductive ratio, stability analysis, immunization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.