Acetaminophen is a commonly used analgesic drug that induces hepatotoxicity at high doses and produces the acetaminophen metabolite N-acetyl-p-benzoquinone imine (NAPQI) through oxidase isoenzyme system. The antioxidant and anti-inflammatory activity of flavonoid chrysin has been reported in different studies. The present study was conducted to investigate the protective effect of chrysin on acute acetaminophen-induced hepatotoxicity. The cytotoxicity of chrysin on fibroblast cells was evaluated using MTT assay, and then, 54 rats were divided into nine groups of six, and acetaminophen (1500 mg/kg) was administered in all groups except for the control group, second and the seventh groups (40 mg/kg), and all groups were treated with chrysin for 14 days. Liver enzymes, inflammatory factors TNF-α and IL-2, and total antioxidant activity were measured in serum while liver tissue was histopathologically examined. Based on the MTT assay results, 31.25, 62.5, 125, 250, and 500 μg/mL chrysin had no adverse effects on healthy fibroblast cells (P < 0.05). Chrysin decreased the level of liver enzymes (ALT, AST, and ALP), which were previously increased after the use of acetaminophen (p < 0.05). The hepatoprotective effect and total antioxidant capacity increased in a dose-dependent manner and the effect of the highest concentration of chrysin was equal to the effect of silymarin (P < 0.05). TNF-α in groups 4 to 6 decreased in a dose-dependent manner (P = 0.04), and chrysin did not show any significant reducing effect on IL-2 compared to silymarin. Chrysin prevents the necrosis and injury of acute acetaminophen-induced hepatotoxicity by decreasing liver enzymes and TNF-α and increasing total antioxidant capacity and protecting the liver tissue.
One of the main causes of acute liver failure is overdose with acetaminophen. Excessive consumption of acetaminophen leads to the production of NAPQI (N-acetyl-p-benzoquinone imine) through the activity of the enzyme cytochrome c oxidase. For this purpose, the effect of galangin nanoparticles with antioxidant activities will be evaluated for the treatment of acetaminophen-induced hepatotoxicity. In this study, after the synthesis of galangin nanoparticles and particle size determination, mice were divided into six groups. Before treatment, a single dose (350 mg/kg) of acetaminophen was administered by gavage in all groups. The activity of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), as well as biochemical factors FRAP and MDA in serum were measured and a histopathological study was performed. The prepared nanoparticles produced in this research were characterized by the SEM, DLS, and ZETA potential, and the average particle size was obtained in the range of 150 nm. Serum levels of liver enzymes (AST and ALT) in the nanoparticle group decreased significantly compared with the control group ( P < 0.05 ). In the group without treatment, the activity of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) enzymes increased significantly compared with the treatment groups. Also, galangin nanoparticles, at a dose of 20 mg/kg, improve cell damage in hepatocytes and preserve the tissue structure of the liver. Galangin nanoparticles reduce the acetaminophen-induced hepatotoxicity by reducing the number of liver function indices. According to our findings, the liver-protective effects of the nanoparticle may be due to its antioxidant properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.