The large amounts of data used nowadays have motivated research and development in different disciplines in order to extract useful information with a view to analyzing it to solve difficult problems. Data mining and machine learning are two computing disciplines that enable analysis of huge data sets in an automated manner. In this paper, we give an overview of several applications using these disciplines in education, particularly those that use some of the most successful methods in the machine learning community, such as artificial neural networks, decision trees, Bayesian learning and instance-based methods. Although these two areas of artificial intelligence have been applied in many real-world problems in different fields, such as astronomy, medicine, and robotics, their application in education is relatively new. The search was performed mainly on databases such as EBSCO, Elsevier, Google Scholar, IEEEXplore and ACM. We hope to provide a useful resource for the education community by presenting this review of approaches.Keywords: Education, Data mining, Machine learning. ResumenLa gran cantidad de datos utilizados en la actualidad han motivado la investigación y el desarrollo en diferentes disciplinas buscando extraer información útil con el fin de analizarla para resolver problemas difíciles. La Minería de datos y el Aprendizaje automático son dos disciplinas informáticas que permiten analizar enormes conjuntos de datos de forma automática. En este documento proporcionamos un panorama de varias aplicaciones que utilizan estas disciplinas en la Educación, particularmente aquellas que utilizan algunos de los métodos más exitosos en la comunidad de aprendizaje automático, como redes neuronales artificiales, árboles de decisión, aprendizaje bayesiano y métodos basados en instancias. Aunque estas dos áreas de la inteligencia artificial se han aplicado en muchos problemas del mundo real en diferentes campos, como la Astronomía, la Medicina y la Robótica, su aplicación en la Educación es relativamente nueva. La búsqueda se realizó principalmente en bases de datos como EBSCO, Elsevier, Brief review of educational applications using data mining and machine learning Google Scholar, IEEEXplore y ACM. Esperamos proporcionar un recurso útil para la comunidad educativa con esta revisión de enfoques.Palabras clave: Educación, Minería de datos, Aprendizaje automático.
Tutoring is part of the teaching–learning process; this is considered a complementary strategy to support the development of integral and competent professionals. When teachers deal with large groups of students such as in digital learning environments, tutoring becomes a time‐consuming and difficult task that can cause distraction and overload. This paper presents an experimental study to associate students and teachers for tutoring according to their skills and affinities using the clustering methods of k‐means, expectation maximization, and farthest first. The study harvests data of 1,199 university students and 35 teachers. The results reached 100% of compatibility between clusters using expectation maximization and farthest first.
Formato de la revista: 16,5 x 23,0 cm Los recursos incluidos en Píxel Bit están sujetos a una licencia Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (Reconocimiento-NoComercial-CompartirIgual)(CC BY-NC-SA 3.0), en consecuencia, las acciones, productos y utilidades derivadas de su utilización no podrán generar ningún tipo de lucro y la obra generada sólo podrá distribuirse bajo esta misma licencia. En las obras derivadas deberá, asimismo, hacerse referencia expresa a la fuente y al autor del recurso utilizado. ©2019 Píxel-Bit. No está permitida la reproducción total o parcial por ningún medio de la versión impresa de la Revista Píxel-Bit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.