Management of a problem recently known as "dark silicon" is a new challenge in multicore designs. Prior innovative studies have addressed the dark silicon problem in the fields of power-efficient core design. However, addressing dark silicon challenges in uncore component designs such as cache hierarchy, on-chip interconnect etc. that consume significant portion of the on-chip power consumption is largely unexplored. In this paper, for the first time, we propose an integrated approach which considers the impact of power consumption of core and uncore components simultaneously to improve multi/manycore performance in the dark silicon era. The proposed approach dynamically (1) predicts the changing program behavior on each core; (2) re-determines frequency/voltage, cache capacity and technology in each level of the cache hierarchy based on the program's scalability in order to satisfy the power and temperature constraints. In the proposed architecture, for future chip-multiprocessors (CMPs), we exploit emerging technologies such as non-volatile memories (NVMs) and 3D techniques to combat dark silicon. Also, for the first time, we propose a detailed power model which is useful for future dark silicon CMPs power modeling. Experimental results on SPEC 20 0 0/20 06 benchmarks show that the proposed method improves throughput by about 54.3% and energy-delay product by about 61% on average, respectively, in comparison with the conventional CMP architecture with homogenous cache system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.