FLUKA-based Monte Carlo calculations were carried out to study microdosimetric distributions in air and in water for encapsulated high energy brachytherapy sources (60Co, 137Cs, 192Ir and 169Yb) by simulating a Tissue Equivalent Proportional Counter (Model LET1/2) having sensitive diameter of 1. 27 cm for a site size of 1 μm. The study also included microdosimetric distributions of bare sources. When the sources are in air, for a given source, the source geometry does not affect the y¯F and y¯D values significantly. When the encapsulated 192Ir, 137Cs and 60Co sources are in water, y¯F and y¯D values increase with distance in water which is due to degradation in the energy of photons. Using the calculated values of y¯D, relative biological effectiveness (RBE) was obtained for the investigated sources. When 60Co, 137Cs and 192Ir sources are in water, RBE increases from 1.03 ± 0.01 to 1.17 ± 0.01, 1.24 ± 0.01 to 1.46 ± 0.02 and 1.50 ± 0.01 to 1.75 ± 0.03, respectively, when the distance was increased from 3–15 cm, whereas for 169Yb, RBE is about 2, independent of distance in water.
Applicability of pure propane gas for microdosimetric measurements in neutron fields was investigated using the FLUKA Monte Carlo code. Monoenergetic neutrons in the energy range 1 keV−20 MeV and the ISO-neutron sources such as 241Am-Be, 241Am-B, 252Cf and 252Cf + D2O were considered in the present study. The tissue-equivalent proportional counter (TEPC) simulated in the study was LET-1/2 (by Far West Technology) with site sizes 1, 2 and 8 μm. The study demonstrates that for a given site size, the TEPC filled with tissue-equivalent propane and pure propane gases produce similar microdosimetric distributions when the density of pure propane gas is lowered appropriately. For the ISO-neutron sources, the density of propane gas requires scaling by a factor 0.85. For the monoenergetic neutrons, depending upon the neutron energy, the values of scaling factors are in the range of 0.58–0.93.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.