We have measured the temperature-dependent thermoelectric power (TEP) of crystalline ropes of single-walled carbon nanotubes. The TEP is large and holelike at high temperatures and approaches zero as T ! 0. The results argue against the opening of a gap at low temperature in these materials. When derived from a simple band structure picture, the TEP of a single metallic nanotube is significantly lower than the measured TEP, strongly suggesting that the predicted electron-hole symmetry of metallic nanotubes is broken when the tubes self-assemble into ropes. Different models for the symmetry breaking are considered. [S0031-9007(97)05214-9]
We prove the equivalence between adiabatic quantum computation and quantum computation in the circuit model. An explicit adiabatic computation procedure is given that generates a ground state from which the answer can be extracted. The amount of time needed is evaluated by computing the gap. We show that the procedure is computationally efficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.