Mt. Merapi, Indonesia, is one of the most active and dangerous volcanoes in the Torrid Zone. This volcano has erupted frequently and has produced pyroclastic flows following the collapse of the summit lava dome. We used Synthetic Aperture Radar (SAR) data acquired by JERS-1 and RADARSAT-1 satellites from April 1996 to July 2006 to clarify the distribution patterns of the pyroclastic flow deposits. The extent of the deposits, termed P-zones, was accurately extracted by ratio operation and low-level feature extraction from SAR intensity images. These images highlighted temporal changes of the distribution area, perimeter, flow distance, included angle, and collapse direction. To validate the image-processing results, reflectance spectra of the rock samples collected after the eruption in June 2006 were measured in a laboratory. The reflectance spectra of all samples showed similar characteristics to the reference spectra, which were derived from atmospheric correction of Hyperion sensor image data covering the lava dome at the summit. Therefore, P-zones were confirmed to be the pyroclastic flow deposits originating from destruction of the lava dome at the summit. The image-processing results clarified that the extent of the distribution areas, perimeter, flow distances, and included angle of the P-zones were variable among the eruptions, while the collapse direction had a constant pattern. The collapse pattern followed a clockwise change from the south toward the west. By comparing the ratio maps of Bouguer gravity anomaly data in two periods, the change was interpreted to originate from the inclination of the conduit and the formation of shallow and deep magma reservoirs.
Abstract:In early 2017, the geothermal system in the Suli and Tulehu areas of Ambon (Indonesia) was investigated using a gravity gradient tensor and analytic signal. The gravity gradient tensor and analytic signal were obtained through forward modeling based on a rectangular prism. It was applied to complete Bouguer anomaly data over the study area by using Fast Fourier Transform (FFT). The analysis was conducted to enhance the geological structure like faults as a pathway of geothermal fluid circulation that is not visible on the surface because it is covered by sediment. The complete Bouguer anomaly ranges of 93 mGal up to 105 mGal decrease from the southwest in Suli to the northeast in Tulehu. A high gravity anomaly indicates a strong magmatic intrusion below the Suli region. The gravity anomalies decrease occurs in the Eriwakang mountain and most of Tulehu, and it is associated with a coral limestone. The lower gravity anomalies are located in the north to the northeast part of Tulehu are associated with alluvium. The residual anomaly shows that the drill well TLU-01 and geothermal manifestations along with the Banda, and Banda-Hatuasa faults are associated with lowest gravity anomaly (negative zone). The gravity gradient tensor simulation and an analytic signal of Suli and Tulehu give more detailed information about the geological features. The g zz component allows accurate description of the shape structures, especially the Banda fault associated with a zero value. This result will be useful as a geophysical constraint to subsurface modeling according to gravity gradient inversion over the area.
The 4D gravity or time lapse gravity has been used many reseracher to identify fluid injection in oil reservoir. The objective of this study is to find the better way in interpreting 4D gravity anomaly due to fluid injection around the reservoir. Radial Derivatives are derivative values of gravity anomalies against horizontal distances in the radial direction. Radial inversion is a two-dimensional inversion of lines with radial directions resulting in a 3-dimension model. Time lapse microgravity research have been performed in "X Oil Field" with amount of 604 data point covering area of 4000 m x 5000 m. This Radial derivative and Radial inversion have been aplied at an injection well of the X oil field. The yield show that 4D gravity anomaly value due to injection is 0.02 mGal to 0.36 mGal. Radial derivative value in the area is 0 micro Gal/cm to 0,012 mGal/meter. Radial inversion shows radius of fluid front movement is 304 meters to 1120 meters. Radial derivative and Radial inversion have been proven fairly good to identify injected fluid movement in the reservoir.
Indonesia has the highest number of active volcano all over the world. There were 63 eruptions with more than 70000 casualties from last year eruptions. To minimize the effect of this disaster, we have developed a volcano early warning system for Indonesian volcano. The main part of the system is volcano monitoring system. A system based on Internet of Things (IoT) has been developed to monitor some activities of a volcano. The physical parameters of these activities are indicated by the changing of temperature, gases (sulphur dioxide and carbon dioxide) concentration, vibration and landslides. The system consists of these parameter sensors, a microcontroller, a solar cell and a Long Range Radio (LoRa) for data transmission to the base station. The system has been tested in laboratory environment for the solar cell, sensors and radio communication. The solar cell could generate 18.81 Volt voltage and 0.23 Ampere current. The temperature sensor has been calibrated for until 51°C measurement (volcano normal condition), while the gas sensor could properly detect the gas until 8 ppm according to the calibration result. After Fast Fourier Transform (FFT) analysis the vibration sensor detected almost zero frequency with 0.168 m/s2, 0.0168 m/s2 and 1.125 m/s2 X, Y and Z axis zero offset respectively. In addition, the landslide had maximum about 4° degraded land slope error. Moreover, only 4% (maximum) percentage error rate (PER) shown by the radio for about 400 m data communication. Furthermore, the physical parameter data acquired then be real-time displayed using Node-red dashboard which can be accessed by the user or other parties who need the information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.