Abstract. Fly ash is a by-product obtained from coal combustion process. Some of the utilization of fly ash is to produce geopolymer products which have high compressive strength, fire, chemical resistance. This paper proposes fly ash from unit 1-7 Suralaya Power Plant Indonesia. The aims of this study are to obtain characterization of fly ash and mechanical properties of geopolymer paste based on variations of the alkali activator ratio. The method was based on previous research and laboratory investigation. XRF and compressive strength were analysed in this study. Alkali activator was obtained from NaOH and Na2SiO3 mixture. The ratio of Na2SiO3 to NaOH was in the range of 0.5-2.5. Geopolymer paste was casted in acrylic cylinders with a diameter of 2 cm and a height of 4 cm. The curing was conducted at room temperature until the day for the compressive strength test at 28 days. The result showed that the fly ash is classified as F class. Increasing the alkali activator ratio influenced the strength. The best composition of geopolymer paste is made with NaOH 8M, and the mass ratio of Na2SiO3 to NaOH is 2.5. This composition produced compressive strength of 98.6 MPa.
One of the assets of land transportation infrastructure that obtained attention now is the road. Road construction can support the developing economy, industry, trade, people and good mobility, regional development. Management of road infrastructure assets require to prioritize natural resources managements efficiently as possible. Reclaimed Asphalt Pavement (RAP) is the result of dredging material with aggregate gradation condition that are not in accordance with the needs of the gradation envelope. Utilization of RAP as a pavement layer is an effort to converse the use of natural materials. The efficiency aspect of RAP aggregate use needs to be done by determining the road pavement layer that is most appropriate to the condition of the RAP aggregate so that the addition of new aggregates is kept to a minimum. The aim of this study was to obtain a suitable pavement layer determination based on the aggregate gradation of RAP and standard specifications. The method used literature study from previous research and RAP aggregate sieve analysis from national roads in East Java Province. The results showed that the utilization of RAP from national roads based on the RAP aggregate conformance value were AC-WC layer of 82.292%, AC-BC layer of 68.75% and AC-Base layer of 41.667%. Based on the gradation analysis, it is found that the RAP aggregate is best suited for the AC-WC layer, because it requires optimal RAP aggregate and the most efficient of additional aggregate.
Reclaimed Asphalt Pavement (RAP) is a paving stripping material with Cold Milling Machine. The RAP accumulation in East Java Province is estimated 50,000 m 3 per-year. The RAP usage can decrease RAP accumulation, natural material, damage rate by mining or excavation. RAP mixture produced an optimum performances (workability, stability). RAP improved volumetric and mechanical properties of mixture. On the other hand, the usage of RAP increased the brittleness of pavement. It is necessary to support in microstructural aspect so the addition of RAP can produce better performance. The objective of this study is to obtain physical and mechanical properties of asphalt concrete contain RAP. Method used literature study. The result showed the physical properties of aggregate and asphalt RAP according the specification standard exception on gradation, penetration and ductility. The Asphalt Concrete with RAP include in specification standard, exception was in the range of 3.78-4.63%, the optimum in VIM PRD. The asphalt content in RAP RAP of 20-30%. RAP can be used as AC-WC, AC-BC, AC-Base. The strength of RAP depends on the source of RAP. The usage of RAP requires new or other material so it become the environment friendly material.
Abstract. Reclaimed Asphalt Pavement (RAP) is a dredging pavement material using Cold Milling Machine. The application of Reclaimed Asphalt Pavement is increased year by year. Due to the increasing application of RAP year by year which implicates environment condition, especially in damaging natural resources, the research on material used in RAP needs to be conducted, so RAP can be optimally utilized. To achieve optimal performance, data of RAP characteristics reviewed from microstructural analysis is necessary. The objective of this research is to obtain the characteristics of Reclaimed Asphalt Pavement. The method used was literary study based on previous research. Material tests used were XRF, SEM and FTIR. The object of study was RAP material taken from national road Waru Sidoarjo. The major compositions of Reclaimed Asphalt Pavement obtained were Kaolin, Lithium, Tetraborate, Dextrin. SEM graphics showed the morphological and surface texture of RAP. FTIR graphic presented the functional group of Reclaimed Asphalt Pavement showing O-H C-O acid in the peak of graphic. From XRD result, the major compounds of Reclaimed Asphalt Pavement obtained were Calcium, Sodium, Aluminum, Silicate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.