Background: The tear film is a trilaminar fluid composed mainly of lipids, electrolytes, proteins and water. It is responsible for lubrication, nutrition and protection against microbial and toxic agents. Disruption of any these components may weaken the ocular surface, making it more susceptible to disease. Increasing evidence suggests that qualitative tear film deficiencies are an important predisposing factor or cause of some of the most common and challenging ocular diseases in cats, including conjunctivitis, corneal ulcer, spontaneous chronic corneal epithelial defects (SCCED), pigmentary keratitis, corneal sequestrum and dry eye syndrome. The aim of this study was to describe the tear ferning test in healthy cats and to compare the results by using two grading scales for humans. Tear samples were collected using Schirmer tear test (STT) strips from 60 healthy cats, and, after centrifuging the strips to obtain the samples, the aliquot was placed on clean microscope glass until it dried and the tear ferning patterns were observed under a polarized light microscope and classified according to the Rolando and Masmali grading scales. Results: Ferning patterns in the lower grades showed full crystallization with high density, without gaps between the ferns and branches, forming several nuclei that were easily distinguished. According to the Rolando scale, 50% (60/120), 46.6% (56/120) and 3.4% (4/120) of eyes showed type I, II and III patterns, respectively. According to the Masmali scale, 15% (18/120), 56.6% (68/120 eyes) and 28.4% (34/120) of eyes showed grade 0, 1 and 2 patterns, respectively. No difference was observed between the right and left eyes for both Rolando (P = 0.225) and Masmali (P = 0.683) scales. Conclusions: The tear ferning test is a qualitative test that can be used in cats as a complementary evaluation of the ocular surface. While the Rolando scale showed an increased prevalence of types I and II, the Masmali scale showed an increased prevalence of grades 1 and 2. This can be attributed to the species-specific differences between human and feline tear film. So Masmali grade 2 can be considered a normal tear pattern for the species, because all the cats used in study were clinically healthy. For this reason, future complementary studies are necessary for comparing healthy eyes and eyes with different ocular surface disease in cats. Both scales can be feasible options for grading tear crystallization in cats, but as Rolando scale included 96.6% of the samples in the 2 types that are considered normal for humans, we think that this scale seemed to be more precise to classify crystallization pattern in cats. The crystallization patterns observed in this study can form the basis for standardizing ocular surface parameters in cats.
To compare tear electrolytes and tear crystallization patterns in birds and reptiles, tears were sampled by Schirmer tear test from 10 animals each of Ara ararauna, Amazona aestiva, Tyto alba, Rupornis magnirostris, Chelonoidis carbonaria , and Caiman latirostris , and 5 of Caretta caretta . The aliquots were pooled to assess concentrations of total protein, chloride, phosphorus, iron, sodium, potassium, calcium, and urea. For the tear ferning test, samples of each species were observed under a polarized light microscope at room temperature and humidity. Crystallization patterns were graded according Rolando and Masmali scales. There was more total protein and urea in owl and sea turtle tears, respectively, than in the other animals tested. Electrolyte balance was similar for all species, with higher sodium, chloride, and iron. In birds, Rolando-scale grades of tear crystallization patterns ranged from I to II, and from 0 to 2 using the Masmali scale; in reptiles, grades were II to IV (Rolando) and 2 to 4 (Masmali). Crystallization arrangements of some species had higher scores, as caimans and sea turtles, possibly due to different the tear composition. Marine and lacustrine species presented higher. The ionic balance of lacrimal fluids of birds and reptiles was similar to that in humans, with higher values of sodium and chloride. However, a similar tear composition did not influence the crystal morphology. Crystallization classification suggested that higher grades and types are due to the different microelements present in the tears of wild species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.