This study describes the genetic characterization of serotype A viruses collected during outbreaks of foot-and-mouth disease (FMD) that occurred in Algeria in 2017. These are the first reports of clinical cases due to this serotype in the country since 1977. One complete genomic sequence (comprising 8,119 nucleotides) and three additional near-complete genomic sequences were generated. Phylogenetic analyses demonstrated that these viruses were classified within the A/AFRICA/G-IV lineage, most closely related to viruses circulating in Nigeria between 2009 and 2015. These unexpected results motivate further studies to define the precise pathways by which this viral lineage has been introduced into North Africa in order to understand risks of future disease incursions into the region.
In the last decade, an upsurge of human leishmaniasis has been reported in the Emilia-Romagna region, Northeast Italy. Epidemiologic data have raised doubts about the role of dogs as the main reservoirs for Leishmania infantum. In the present study, a total of 1,077 wild animals were screened for L. infantum DNA in earlobe and spleen samples from 2019 to 2022. The lymph nodes were tested only in 23 animals already positive in the earlobe and/or spleen. A total of 71 (6.6%) animals resulted positive in at least one of the sampled tissues, including 3/18 (16.7%) wolves, 6/39 (15.4%) European hares, 38/309 (12.3%) roe deer, 1/11 (9.1%) red deer, 8/146 (4.9%) wild boars, 13/319 (4.1%) red foxes, 1/54 (1.9%) porcupine, and 1/59 (1.7%) European badger. Most of the infected animals (62/71) tested positive only in the earlobe tissue, only four animals (two roe deer and two wild boars) tested positive only in the spleen, and five animals (three roe deer and two red foxes) resulted positive for both tissues. L. infantum DNA was detected in the lymph nodes of 6/23 animals. L. infantum detection occurred in all seasons associated with low real-time PCR Ct values. Further research is needed in order to clarify the role of wildlife in the re-emerging focus of leishmaniasis in Northeast Italy.
During the last 25 years, swine vesicular disease (SVD) has occurred in Italy mostly sub-clinically. Therefore, regular testing of fecal samples from suspected holdings and high turnover premises was fundamental to identifying virus circulation and to achieve SVD eradication. In this study, we evaluated diagnostic performances of six genomic amplification methods, using positive fecal samples from 78 different outbreaks (1997–2014), which included different lineages. Comparison of three RT-PCRs, designed to amplify the same 154 nt portion of the gene 3D, demonstrated that a conventional and a real-time based on SYBR Green detection assay showed the highest diagnostic sensitivity, detecting all samples, while a real-time TaqMan-based test missed three cases, owing to two mismatches in the probe target sequence. Diagnostic and analytical specificities were optimal, as 300 negative field samples and other enteroviruses reacted negative. Three further evaluated tests, previously described, were a 3D-targeted reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) and two real-time RT-PCRs targeted on the 5′UTR region. Here, the presence of multiple mismatches in probe and primers reduced the diagnostic performances, and two of the assays were unable to detect viruses from one sub-lineage. These results highlight that the choice of tests using less nucleotide targets significantly contributed to the success of the SVD eradication plan.
The O/ME‐SA/Ind‐2001d has been the main foot‐and‐mouth disease virus (FMDV) lineage responsible for FMD epidemics outside the Indian subcontinent from 2013 to 2017. In 2014, outbreaks caused by this FMDV lineage were reported in Maghreb, where it was initially detected in Algeria and Tunisia and later in Morocco. This was the first incursion of an FMDV type O of exotic origin in the Maghreb region after 14 years of absence. In this study, we report analyses of both VP1 and whole‐genome sequences (WGSs) generated from 22 isolates collected in Algeria and Tunisia between 2014 and 2015. All the WGSs analysed showed a minimum pairwise identity of 98.9% at the nucleotide level and 99% at the amino acid level (FMDV coding region). All Tunisian sequences shared a single putative common ancestor closely related to FMDV strains circulating in Libya during 2013. Whereas sequences from Algeria suggest the country experienced two virus introductions. The first introduction is represented by strains circulating in 2014 which are closely related to those from Tunisia, the second one, of which the origin is more uncertain, includes strains collected in Algeria in 2015 that gave origin to the 2015 outbreak reported in Morocco. Overall, our results demonstrated that a unique introduction of O/Ind‐2001d FMDV occurred in Maghreb through Tunisia presumably in 2014, and from then the virus spread into Algeria and later into Morocco.
In the last decade, an upsurge of human leishmaniasis has been reported in the Emilia-Romagna region, Northeast Italy. Epidemiologic data raised doubts about the role of dogs as the main reservoirs for Leishmania infantum. In the present study, a total of 1,077 wild animals were screened for L. infantum DNA in earlobe and spleen samples from 2019 to 2022. The lymph nodes were tested only in the 23 animals already positive in the earlobe and/or spleen. A total of 71 (6.6%) animals resulted positive in at least one of the sampled tissues, including 3/18 (16.7%) wolves, 6/39 (15.4%) European hares, 38/309 (12.3%) roe deer, 1/11 (9.1%) red deer, 8 (4.9%) wild boars, 13/319 (4.1%) red foxes, 1/54 (1.9%) porcupine, and 1/59 (1.7%) European badger. Most of the infected animals (62/71) tested positive only in the earlobe tissue, just 4 animals (2 roe deer and 2 wild boars) tested positive only in the spleen, and 5 animals (3 roe deer and 2 red foxes) resulted positive for both tissues. L. infantum DNA was detected in the lymph nodes of 6/23 ani-mals. L. infantum detection occurred in all seasons associated with low real-time PCR Ct values. Further research is needed in order to clarify the role of wildlife in the re-emerging focus of leishmaniasis in Northeast Italy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.