Speciation and temperature measurements of methane oxidation during a nanosecond repetitively pulsed discharge in a low-temperature flow reactor have been performed. Measurements of temperature and formaldehyde during a burst of pulses were made on a time-dependent basis using tunable diode laser absorption spectroscopy, and measurements of all other major stable species were made downstream of a continuously pulsed discharge using gas chromatography. The major species for a stoichiometric methane/oxygen/helium mixture with 75% dilution are H 2 O, CO, CO 2 , H 2 , CH 2 O, CH 3 OH, C 2 H 6 , C 2 H 4 and C 2 H 2 . A modelling tool to simulate homogeneous plasma combustion kinetics is assembled by combining the ZDPlasKin and CHEMKIN codes. In addition, a kinetic model for plasma-assisted combustion (HP-Mech/plasma) of methane, oxygen and helium mixtures has been assembled to simulate the measurements. Predictions can accurately capture reactant consumption as well as production of the major product species. However, significant disagreement is found for minor species, particularly CH 2 O and CH 3 OH. Further analysis revealed that the plasma-activated low-temperature oxidation pathways, particularly those involving CH 3 O 2 radical reactions and methane reactions with O( 1 D), are responsible for this disagreement.
Ethylene oxidation initiated by ozone addition (ozonolysis) is carried out in a jet-stirred reactor from 300 to 1000 K to explore the kinetic pathways relevant to low-temperature oxidation. The temperature dependencies of species’ mole fractions are quantified using molecular-beam mass spectrometry with electron ionization and single-photon ionization employing tunable synchrotron-generated vacuum-ultraviolet radiation. Upon ozone addition, significant ethylene oxidation is found in the low-temperature regime from 300 to 600 K. Here, we provide new insights into the ethylene ozonolysis reaction network via identification and quantification of previously elusive intermediates by combining experimental photoionization energy scans and ab initio threshold energy calculations for isomer identification. Specifically, the C2H4 + O3 adduct C2H4O3 is identified as a keto-hydroperoxide (hydroperoxy-acetaldehyde, HOOCH2CHO) based on the calculated and experimentally observed ionization energy of 9.80 (±0.05) eV. Quantification using a photoionization cross-section of 5 Mb at 10.5 eV results in 5 ppm at atmospheric conditions, which decreases monotonically with temperature until 550 K. Other hydroperoxide species that contribute in larger amounts to the low-temperature oxidation of C2H4, like H2O2, CH3OOH, and C2H5OOH, are identified and their temperature-dependent mole fractions are reported. The experimental evidence for additional oxygenated species such as methanol, ketene, acetaldehyde, and hydroxy-acetaldehyde suggest multiple active oxidation routes. This experimental investigation closes the gap between ozonolysis at atmospheric and elevated temperature conditions and provides a database for future modeling.
An instability in a nanosecond pulsed dielectric barrier discharge plasma occurring in methane–oxygen–argon mixtures is experimentally observed and measured by 1D time-resolved in situ electric field measurements. This instability, which seems to be created by the positive feedback between plasma kinetics and plasma-assisted low temperature fuel oxidation, is studied using electric field induced second harmonic generation and direct ICCD imaging. The rapid formation of streamers from an originally uniform discharge appears to be caused by the chemical kinetics of plasma-assisted low temperature methane oxidation, which may be resulting in a new type of plasma instability: a thermal-chemical instability. The results also revealed that the occurrence of this possible thermal-chemical instability in a reactive flow drastically changes the plasma properties by forming multiple secondary discharges and possibly leads to micron-sized non-uniform electric distributions. Single shot uncalibrated measurements of the electric field of the micron sized streamers appears to show much greater strengths than the average electric field. Furthermore, one-dimensional data analysis shows the positive feedback loop between the streamers and the low temperature plasma assisted oxidation chemistry in the plasma thermal-chemical instability. The present finding advances the understanding plasma instability growth and provides a new way to control plasma uniformity in plasma-assisted combustion and plasma fuel reforming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.