We study the transient dynamics of a viscous liquid contained in a narrow gap between a rigid surface and a parallel elastic plate. The elastic plate is deformed due to an externally applied time-varying pressure-field. We model the flow-field via the lubrication approximation, and the plate deformation by the Kirchhoff-Love plate theory. We obtain a self-similarity solution for the case of an external point force acting on the elastic plate. The pressure and deformation field during and after the application of the external force are derived and presented by closed form expressions. We examine a uniform external pressure acting on the elastic plate over a finite region and during a finite time period, similar to the viscous-elastic interaction time-scale. The interaction between elasticity and viscosity is shown to reduce by order of magnitude the pressure within the Hele-Shaw cell compared with the externally applied pressure, thus suggesting such configurations may be used for impact mitigation.
The ability to create dynamic deformations of micron-sized structures is relevant to a wide variety of applications such as adaptable optics, soft robotics, and reconfigurable microfluidic devices. In this work we examine non-uniform lubrication flow as a mechanism to create complex deformation fields in an elastic plate. We consider a Kirchoff-Love elasticity model for the plate and Hele-Shaw flow in a narrow gap between the plate and a parallel rigid surface. Based on linearization of the Reynolds equation, we obtain a governing equation which relates elastic deformations to gradients in non-homogenous physical properties of the fluid (e.g. body forces, viscosity, and slip velocity). We then focus on a specific case of non-uniform Helmholtz-Smoluchowski electroosmotic slip velocity, and provide a method for determining the zeta-potential distribution necessary to generate arbitrary static and quasi-static deformations of the elastic plate. Extending the problem to time-dependent solutions, we analyze transient effects on asymptotically static solutions, and finally provide a closed form solution for a Greens function for time periodic actuations.
The toe pads of frogs consist of soft hexagonal structures and a viscous liquid contained between and within the hexagonal structures. It has been hypothesized that this configuration creates adhesion by allowing for long-range capillary forces, or, alternatively, by allowing for exit of the liquid and thus improving contact of the toe pad. In this work, we suggest interaction between viscosity and elasticity as a mechanism to create temporary adhesion, even in the absence of capillary effects or van der Waals forces. We initially illustrate this concept experimentally by a simplified configuration consisting of two surfaces connected by a liquid bridge and elastic springs. We then utilize poroelastic mixture theory and model frogs' toe pads as an elastic porous medium, immersed within a viscous liquid and pressed against a rigid rough surface. The flow between the surface and the toe pad is modelled by the lubrication approximation. Inertia is neglected and analysis of the elastic-viscous dynamics yields a governing partial differential equation describing the flow and stress within the porous medium. Several solutions of the governing equation are presented and show a temporary adhesion due to stress created at the contact surface between the solids. This work thus may explain how some frogs (such as the torrent frog) maintain adhesion underwater and the reason for the periodic repositioning of frogs' toe pads during adhesion to surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.