Sex determination (SD) mechanisms are ancient and conserved, yet much diversity is exhibited in primary sex-determining signals that trigger male or female development. In O. niloticus, SD is associated with a male-specific locus on linkage group (LG) 23 which harbors the Y-linked Anti-Müllerian hormone (amh) gene, and a truncated duplication, denoted amhΔy. We have evaluated the possible role of identified indels and SNPs in the amh gene on SD, based on conservation in different O. niloticus strains. A fluorescent assay for the detection of a 5 bp insertion in amhΔy exon VI, efficiently discriminated between XX, XY, and YY genotypes. Concordance rate between amhΔy and sex varied in six Oreochromis strains, from 100% (Ghana) through 90% (Swansea) to 85% (Thai-Chitralada). The association of amhΔy with sex was found to be conserved in all tested O. niloticus strains, and thus supports its key role in SD. However, the previously identified missense SNP (C/T) in amh exon II was found only in the Swansea strain, thus excluding its candidacy for the causal variation of SD across all strains. Effects of markers on LGs 1, 3, and 23 (amhΔy) fully explained sex distribution in one Thai-Chitralada family (R 2 = 1.0), whereas in another family only the major effect of LG23 (amhΔy) was significant (R 2 = 0.37). Thus, amhΔy on LG23 is associated with genetic SD, either as a single causal gene in different O. niloticus strains, or in combination with segregating genes on LGs 1 and 3 in the Thai-Chitralada hybrid strain.
Flathead gray mullet (
Mugil cephalus
) is a cosmopolitan mugilid species popular in fishery and aquaculture with an economic preference for all-female population. However, it displays neither sexual dimorphisms nor heteromorphic sex chromosomes. We have previously presented a microsatellite-based linkage map for this species locating a single sex determination region (SDR) on linkage group 9 (LG9) with evidence for XX/XY sex determination (SD) mechanism. In this work, we refine the critical SDR on LG9, and propose positional- and functional- candidate genes for SD. To elucidate the genetic mechanism of SD, we assembled and compared male and female genomic sequences of 19 syntenic genes within the putative SDR on mullet’s LG9, based on orthology to tilapia’s LG8 (tLG8) physical map. A total of 25 sequence-based markers in 12 genes were developed. For all markers, we observed association with sex in at least one of the two analyzed
M. cephalus
full-sib families, but not in the wild-type population. Recombination events were inferred within families thus setting the SDR boundaries to a region orthologous to ∼0.9 Mbp with 27 genes on tLG8. As the sexual phenotype is evident only in adults, larvae were assigned into two putative sex-groups according to their paternal haplotypes, following a model of XY/XX SD-system. A total of 107 sex-biased differentially expressed genes in larvae were observed, of which 51 were mapped to tLG8 (48% enrichment), as compared to 5% in random control. Furthermore, 23 of the 107 genes displayed sex-specific expression; and 22 of these genes were positioned to tLG8, indicating 96% enrichment. Of the 27 SDR genes,
BCCIP
,
DHX32A
,
DOCK1
, and
FSHR
(
GTH-RI
) are suggested as positional and functional gene candidates for SD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.