The use of water quality indices (WQIs) as a tool to evaluate the status of water quality in rivers has been introduced since the 1960s. The WQI transforms selected water quality parameters into a dimensionless number so that changes in river water quality at any particular location and time could be presented in a simple and easily understandable manner. Although many WQIs have been developed, there is no worldwide accepted method for implementing the steps used for developing a WQI. Thus, there is a continuing interest to develop accurate WQIs that suit a local or regional area. This paper aims to provide significant contribution to the development of future river WQIs through a review of 30 existing WQIs based on the four steps needed to develop a WQI. These steps are the selection of parameters, the generation of sub-indices, the generation of parameter weights and the aggregation process to compute the final index value. From the 30 reviewed WQIs, 7 were identified as most important based on their wider use and they were discussed in detail. It was observed that a major factor that influences wider use of a WQI is the support provided by the government and authorities to implement a WQI as the main tool to evaluate the status of rivers. Since there is a lot of subjectivity and uncertainty involved in the steps for developing and applying a WQI, it is recommended that the opinion of local water quality experts is taken, especially in the first three steps (through techniques like Delphi method). It was also observed that uncertainty and sensitivity analysis was rarely undertaken to reduce uncertainty and hence such an analysis is recommended for future studies.
Surface water samples were collected from rivers which fed into large urban areas within Vietnam, Indonesia, Cambodia, and Thailand and were processed to enumerate Escherichia coli. Selected isolates were further characterized using PCR to detect the presence of specific virulence genes. Analyzing the four countries together, the approximate mean cfu/100 ml for E. coli counts in the dry season were log 4.3, while counts in the wet season were log 2.8. Of the 564 E. coli isolates screened for the presence of pathogenic genes, 3.9 % possessed at least one virulence gene. The most common pathogenic types found were Shiga toxin-producing E. coli isolates. These results reinforce the importance of monitoring urban surface waters for fecal contamination, that E. coli in these water environments may serve as opportunistic pathogens, and may help in determining the impact water usage from these rivers have on the public health of urban populations in Southeast Asia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.