The evaluation of the quality of water bodies is of fundamental importance to the study and use of water. Aiming to improve the understanding of the phenomena which occur in these environments, several indices have been proposed over the years, using several statistical, mathematical and computational techniques. For this, it is necessary to know the variables which influence different water bodies. However, not all places are able to make the most diverse analyses due to the financial and sanitary conditions, which can promote greater expenses in treatment as well as make the limits of tolerance of the water quality higher. Nowadays, there is a need to formulate indices which can address climate change in its variables, making it even closer to reality. In this context, seeking to reduce the number of variables used, collection costs, laboratory analyses and a greater representativeness of the indices, multivariate statistical techniques and artificial intelligence are being increasingly used and obtaining expressive results. These advances contribute to the improvement of water quality indices, thus seeking to obtain one which portrays the various phenomena which occur in water bodies in a more rapid and coherent way with the reality and social context of water resources.