Areas at risk of land subsidence in Jakarta can be identified using a land subsidence susceptibility map. This study evaluates the quality of a susceptibility map made using functional (logistic regression and multilayer perceptron) and meta-ensemble (AdaBoost and LogitBoost) machine learning algorithms based on a land subsidence inventory map generated using the Sentinel-1 synthetic aperture radar (SAR) dataset from 2017 to 2020. The land subsidence locations were assessed using the time-series interferometry synthetic aperture radar (InSAR) method based on the Stanford Method for Persistent Scatterers (StaMPS) algorithm. The mean vertical deformation maps from ascending and descending tracks were compared and showed a good correlation between displacement patterns. Persistent scatterer points with mean vertical deformation value were randomly divided into two datasets: 50% for training the susceptibility model and 50% for validating the model in terms of accuracy and reliability. Additionally, 14 land subsidence conditioning factors correlated with subsidence occurrence were used to generate land subsidence susceptibility maps from the four algorithms. The receiver operating characteristic (ROC) curve analysis showed that the AdaBoost algorithm has higher subsidence susceptibility prediction accuracy (81.1%) than the multilayer perceptron (80%), logistic regression (79.4%), and LogitBoost (79.1%) algorithms. The land subsidence susceptibility map can be used to mitigate disasters caused by land subsidence in Jakarta, and our method can be applied to other study areas.
The aims of this research were to map and analyze the risk of land subsidence in the Seoul Metropolitan Area, South Korea using satellite interferometric synthetic aperture radar (InSAR) time-series data, and three ensemble machine-learning models, Bagging, LogitBoost, and Multiclass Classifier. Of the types of infrastructure present in the Seoul Metropolitan Area, subway lines may be vulnerable to land subsidence. In this study, we analyzed Persistent Scatterer InSAR time-series data using the Stanford Method for Persistent Scatterers (StaMPS) algorithm to generate a deformation time-series map. Subsidence occurred at four locations, with a deformation rate that ranged from 6–12 mm/year. Subsidence inventory maps were prepared using deformation time-series data from Sentinel-1. Additionally, 10 potential subsidence-related factors were selected and subjected to Geographic Information System analysis. The relationship between each factor and subsidence occurrence was analyzed by using the frequency ratio. Land subsidence susceptibility maps were generated using Bagging, Multiclass Classifier, and LogitBoost models, and map validation was carried out using the area under the curve (AUC) method. Of the three models, Bagging produced the largest AUC (0.883), with LogitBoost and Multiclass Classifier producing AUCs of 0.871 and 0.856, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.