A Mw 7.4 earthquake hit Donggala County, Central Sulawesi Province, Indonesia, on 28 September 2018, triggering a tsunami and liquefaction in Palu City and Donggala. Around 2101 fatalities ensued and 68,451 houses were damaged by the earthquake. In light of this devastating event, a post-earthquake map is required to establish the first step in the evacuation and mitigation plan. In this study, remote sensing imagery from the Landsat-8 and Sentinel-2 satellites was used. Pre- and post-earthquake satellite images were classified using artificial neural network (ANN) and support vector machine (SVM) classifiers and processed using a decorrelation method to generate the post-earthquake damage map. The affected areas were compared to the field data, the percentage conformity between the ANN and SVM results was analyzed, and four post-earthquake damage maps were generated. Based on the conformity analysis, the Landsat-8 imagery (85.83%) was superior to that of Sentinel-2 (63.88%). The resulting post-earthquake damage map can be used to assess the distribution of seismic damage following the Palu earthquake and may be used to mitigate damage in the event of future earthquakes.
To effectively prevent land subsidence over abandoned coal mines, it is necessary to quantitatively identify vulnerable areas. In this study, we evaluated the performance of predictive Bayesian, functional, and meta-ensemble machine learning models in generating land subsidence susceptibility (LSS) maps. All models were trained using half of a land subsidence inventory, and validated using the other half of the dataset. The model performance was evaluated by comparing the area under the receiver operating characteristic (ROC) curve of the resulting LSS map for each model. Among all models tested, the logit boost, which is a meta-ensemble machine leaning model, generated LSS maps with the highest accuracy (91.44%), i.e., higher than that of the other Bayesian and functional machine learning models, including the Bayes net (86.42%), naïve Bayes (85.39%), logistic (88.92%), and multilayer perceptron models (86.76%). The LSS maps produced in this study can be used to mitigate subsidence risk for people and important facilities within the study area, and as a foundation for further studies in other regions.
On November 8, 2018, a devastating wildfire, known as the Camp Fire wildfire, was reported in Butte County, California, USA. Approximately 88 fatalities ensued, and 18,804 structures were damaged by the wildfire. As a response to this destructive wildfire, this study generated a pre- and post-wildfire maps to provide basic data for evacuation and mitigation planning. This study used Landsat-8 and Sentinel-2 imagery to map the pre- and post-wildfire conditions. A support vector machine (SVM) optimized by the imperialist competitive algorithm (ICA) hybrid model was compared with the non-optimized SVM algorithm for classification of the pre- and post-wildfire map. The SVM–ICA produced a better accuracy (overall accuracies of 83.8% and 83.6% for pre- and post-wildfire using Landsat-8 respectively; 90.8% and 91.8% for pre- and post-wildfire using Sentinel-2 respectively), compared to SVM without optimization (overall accuracies of 80.0% and 78.9% for pre- and post-wildfire using Landsat-8 respectively; 83.3% and 84.8% for pre- and post-wildfire using Sentinel-2 respectively. In total, eight pre- and post-wildfire burned area maps were generated; these can be used to assess the area affected by the Camp Fire wildfire as well as for wildfire mitigation planning in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.