Objective: Faced with the frustration of chronic discomfort and restricted mobility due to osteoarthritis (OA), many individuals have turned to acupuncture for relief. However, the efficacy of acupuncture for OA is uncertain, as much of the evidence is inconclusive. The purpose of this study was to evaluate electroacupuncture (EA) in a rodent model of OA such that conclusions regarding its effectiveness for symptom or disease modification could be drawn. Methods: Ten 12-month-old male Hartley guinea pigs—which characteristically have moderate to advanced OA at this age—were randomly assigned to receive EA for knee OA (n = 5) or anesthesia only (control group, n = 5). Treatments were performed three times weekly for 3 weeks, followed by euthanasia 2 weeks later. Gait analysis and enclosure monitoring were performed weekly to evaluate changes in movement. Serum was collected for inflammatory biomarker testing. Knee joints were collected for histology and gene expression. Results: Animals receiving EA had significantly greater changes in movement parameters compared to those receiving anesthesia only. There was a tendency toward decreased serum protein concentrations of complement component 3 (C3) in the EA group compared to the control group. Structural and antioxidant gene transcripts in articular cartilage were increased by EA. There was no significant difference in total joint histology scores between groups. Conclusion: This study provides evidence that EA has a positive effect on symptom, but not disease, modification in a rodent model of OA. Further investigations into mechanistic pathways that may explain the efficacy of EA in this animal model are needed.
Background Despite the high prevalence of osteoarthritis (OA), there remains a need for additional therapeutic options. Cellular therapies with minimally manipulated cells such as bone marrow aspirate concentrates (BMAC) are increasingly popular in the U.S. but clear-cut evidence of efficacy has not been established. In theory, BMAC injections provide a source of stromal cells to stimulate healing in OA and ligamentous injuries; however, BMAC injections are also often associated with inflammation, short-term pain, and mobility impairment. Given that blood is known to trigger inflammation in joints, we hypothesized that removing erythrocytes [red blood cells (RBCs)] from BMAC preparations prior to intra-articular injection would improve efficacy for OA treatment. Methods To test this hypothesis, BMAC was collected from the bone marrow of mice. Three treatment groups were pursued: (I) untreated; (II) BMAC; or (III) BMAC depleted of RBCs by lysis. Product was injected into the femorotibial joint of mice 7 days after OA had been induced by destabilization of the medial meniscus (DMM). To assess the impact of treatment on joint function, individual cage monitoring (ANY-maze TM ) and Digigait treadmill-based analyses were performed over 4 weeks. At study completion, joint histopathology was assessed and immune transcriptomes within joint tissues were compared using a species-specific NanoString panel. Results Significant improvements in activity, gait parameters, and histology scores were seen in animals receiving RBC-depleted BMAC compared to untreated mice; animals treated with non-depleted BMAC did not demonstrate this same extent of consistent significant improvement. Transcriptomic analysis of joint tissues revealed significant upregulation of key anti-inflammatory genes, including interleukin-1 receptor antagonist (IRAP), in mice treated with RBC-depleted BMAC compared to animals treated with non-RBC depleted BMAC. Conclusions These findings indicate that RBC depletion in BMAC prior to intra-articular injection improves treatment efficacy and reduces joint inflammation compared to BMAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.