In this article, I introduce the command, which performs interrupted time-series analysis for single- and multiple-group comparisons. In an interrupted time-series analysis, an outcome variable is observed over multiple, equally spaced time periods before and after the introduction of an intervention that is expected to interrupt its level or trend. The command estimates the effect of an intervention on an outcome variable either for a single treatment group or when compared with one or more control groups. Additionally, its options allow the user to control for autocorrelated disturbances and to estimate treatment effects over multiple periods.
Diagnostic or predictive accuracy concerns are common in all phases of a disease management (DM) programme, and ultimately play an influential role in the assessment of programme effectiveness. Areas, such as the identification of diseased patients, predictive modelling of future health status and costs and risk stratification, are just a few of the domains in which assessment of accuracy is beneficial, if not critical. The most commonly used analytical model for this purpose is the standard 2 x 2 table method in which sensitivity and specificity are calculated. However, there are several limitations to this approach, including the reliance on a single defined criterion or cut-off for determining a true-positive result, use of non-standardized measurement instruments and sensitivity to outcome prevalence. This paper introduces the receiver operator characteristic (ROC) analysis as a more appropriate and useful technique for assessing diagnostic and predictive accuracy in DM. Its advantages include; testing accuracy across the entire range of scores and thereby not requiring a predetermined cut-off point, easily examined visual and statistical comparisons across tests or scores, and independence from outcome prevalence. Therefore the implementation of ROC as an evaluation tool should be strongly considered in the various phases of a DM programme.
Often, when conducting programme evaluations or studying the effects of policy changes, researchers may only have access to aggregated time series data, presented as observations spanning both the pre- and post-intervention periods. The most basic analytic model using these data requires only a single group and models the intervention effect using repeated measurements of the dependent variable. This model controls for regression to the mean and is likely to detect a treatment effect if it is sufficiently large. However, many potential sources of bias still remain. Adding one or more control groups to this model could strengthen causal inference if the groups are comparable on pre-intervention covariates and level and trend of the dependent variable. If this condition is not met, the validity of the study findings could be called into question. In this paper we describe a propensity score-based weighted regression model, which overcomes these limitations by weighting the control groups to represent the average outcome that the treatment group would have exhibited in the absence of the intervention. We illustrate this technique studying cigarette sales in California before and after the passage of Proposition 99 in California in 1989. While our results were similar to those of the Synthetic Control method, the weighting approach has the advantage of being technically less complicated, rooted in regression techniques familiar to most researchers, easy to implement using any basic statistical software, may accommodate any number of treatment units, and allows for greater flexibility in the choice of treatment effect estimators.
BackgroundInterventions targeting individuals classified as “high-risk” have become common-place in health care. High-risk may represent outlier values on utilization, cost, or clinical measures. Typically, such individuals are invited to participate in an intervention intended to reduce their level of risk, and after a period of time, a follow-up measurement is taken. However, individuals initially identified by their outlier values will likely have lower values on re-measurement in the absence of an intervention. This statistical phenomenon is known as “regression to the mean” (RTM) and often leads to an inaccurate conclusion that the intervention caused the effect. Concerns about RTM are rarely raised in connection with most health care interventions, and it is uncommon to find evaluators who estimate its effect. This may be due to lack of awareness, cognitive biases that may cause people to systematically misinterpret RTM effects by creating (erroneous) explanations to account for it, or by design.MethodsIn this paper, the author fully describes the RTM phenomenon, and tests the accuracy of the traditional approach in calculating RTM assuming normality, using normally distributed data from a Monte Carlo simulation and skewed data from a control group in a pre-post evaluation of a health intervention. Confidence intervals are generated around the traditional RTM calculation to provide more insight into the potential magnitude of the bias introduced by RTM. Finally, suggestions are offered for designing interventions and evaluations to mitigate the effects of RTM.ResultsOn multivariate normal data, the calculated RTM estimates are identical to true estimates. As expected, when using skewed data the calculated method underestimated the true RTM effect. Confidence intervals provide helpful guidance on the magnitude of the RTM effect.ConclusionDecision-makers should always consider RTM to be a viable explanation of the observed change in an outcome in a pre-post study, and evaluators of health care initiatives should always take the appropriate steps to estimate the magnitude of the effect and control for it when possible. Regardless of the cause, failure to address RTM may result in wasteful pursuit of ineffective interventions, both at the organizational level and at the policy level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.