We consider in this paper the shortest-path problem in networks in which the delay (or weight) of the edges changes with time according to arbitrary functions. We present algorithms for finding the shortest-path and minimum-delay under various waiting constraints and investigate the properties of the derived path. We show that if departure time from the source node is unrestricted then a shortest path can be found that is simple and achieves a delay as short as the most unrestricted path. In the case of restricted transit, it is shown that there exist cases where the minimum delay is finite but the path that achieves it is infinite. ____________________________________
This memo describes extensions to the OSPF [Moy98] protocol to support QoS routes. The focus of this document is on the algorithms used to compute QoS routes and on the necessary modifications to OSPF to support this function, e.g., the information needed, its format, how it is distributed, and how it is used by the QoS path selection process. Aspects related to how QoS routes are established and managed are also briefly discussed. The goal of this document is to identify a framework and possible approaches to allow deployment of QoS routing capabilities with the minimum possible impact to the existing routing infrastructure.In addition, experience from an implementation of the proposed extensions in the GateD environment [Con], along with performance measurements is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.