First reported in the 1960s, offshore freshened groundwater (OFG) has now been documented in most continental margins around the world. In this review we compile a database documenting OFG occurrences and analyze it to establish the general characteristics and controlling factors. We also assess methods used to map and characterize OFG, identify major knowledge gaps, and propose strategies to address them. OFG has a global volume of 1 × 10 6 km 3 ; it predominantly occurs within 55 km of the coast and down to a water depth of 100 m. OFG is mainly hosted within siliciclastic aquifers on passive margins and recharged by meteoric water during Pleistocene sea level lowstands. Key factors influencing OFG distribution are topography-driven flow, salinization via haline convection, permeability contrasts, and the continuity/connectivity of permeable and confining strata. Geochemical and stable isotope measurements of pore waters from boreholes have provided insights into OFG emplacement mechanisms, while recent advances in seismic reflection profiling, electromagnetic surveying, and numerical models have improved our understanding of OFG geometry and controls. Key knowledge gaps, such as the extent and function of OFG, and the timing of their emplacement, can be addressed by the application of isotopic age tracers, joint inversion of electromagnetic and seismic reflection data, and development of three-dimensional hydrological models. We show that such advances, combined with site-specific modeling, are necessary to assess the potential use of OFG as an unconventional source of water and its role in sub-seafloor geomicrobiology. Plain Language Summary This review paper considers offshore freshened groundwater (OFG), which is water hosted in sediments and rocks below the seafloor, with a total dissolved solid concentration lower than seawater. We have compiled >300 records to demonstrate that freshened groundwater occurs offshore on most continents around the world and has a global volume of 1 × 10 6 km 3. The majority of OFG was deposited when sea level was lower than today and is hosted in sandy sub-seafloor layers that are located within 55 km of coasts in water depths less than 100 m. We present a range of geochemical, geophysical, and modeling approaches that have successfully been used to investigate OFG systems. We also propose approaches to address key scientific questions related to OFG, including whether it may be used as an unconventional source of potable water in coastal areas.
Abstract. For millennia, humans have gravitated towards coastlines for their resource potential and as geopolitical centres for global trade. A basic requirement ensuring water security for coastal communities relies on a delicate balance between the supply and demand of potable water. The interaction between freshwater and saltwater in coastal settings is, therefore, complicated by both natural and human-driven environmental changes at the land–sea interface. In particular, ongoing sea-level rise, warming and deoxygenation might exacerbate such perturbations. In this context, an improved understanding of the nature and variability of groundwater fluxes across the land–sea continuum is timely yet remains out of reach. The flow of terrestrial groundwater across the coastal transition zone and the extent of freshened groundwater below the present-day seafloor are receiving increased attention in marine and coastal sciences because they likely represent a significant yet highly uncertain component of (bio)geochemical budgets and because of the emerging interest in the potential use of offshore freshened groundwater as a resource. At the same time, “reverse” groundwater flux from offshore to onshore is of prevalent socio-economic interest, as terrestrial groundwater resources are continuously pressured by over-pumping and seawater intrusion in many coastal regions worldwide. An accurate assessment of the land–ocean connectivity through groundwater and its potential responses to future anthropogenic activities and climate change will require a multidisciplinary approach combining the expertise of geophysicists, hydrogeologists, (bio)geochemists and modellers. Such joint activities will lay the scientific basis for better understanding the role of groundwater in societally relevant issues such as climate change, pollution and the environmental status of the coastal oceans within the framework of the United Nations Sustainable Development Goals. Here, we present our perspectives on future research directions to better understand land–ocean connectivity through groundwater, including the spatial distributions of the essential hydrogeological parameters, highlighting technical and scientific developments and briefly discussing the societal relevance of that connectivity in rapidly changing coastal oceans.
<p>Offshore fresh groundwater reservoirs have been identified on continental shelves in several regions of the world. In many cases, sea-level change over geologic time-scales has been identified as a key factor in the emplacement of these freshwater systems. This numerical study analyzes a range of paleo-hydrogeological conditions on the New Jersey transect during the late Pleistocene, during which vast sections of the shelf were sub-aerially exposed. Coupled variable-density flow and heat transport simulations were conducted on a geologically representative 2D shelf model using SHEMAT-Suite. The model combines sequence stratigraphic interpretation of 2D depth migrated seismic lines and a stochastic facies distribution, with petrophysical properties derived from IODP Expedition 313 well data. The study considers a 60<sub></sub>000 year period of surface meteoric recharge, and the subsequent marine transgression from 12 000 years ago to present-day. A sensitivity analysis is conducted for key factors that influence offshore freshened groundwater emplacement during recharge phase: (1) topography-driven flow, and (2) permeability anisotropy. Systematically introducing anisotropy resulted in a 11 % &#8211; 31 % decrease in emplaced volume relative to the base-case. The results were analysed to determine whether the late Pleistocene sea-level lowstand drove enough freshwater emplacement that can explain the complex present-day observations. All of the simulated scenarios indicate that surface recharge lead to freshening of sediments across the entire transect during this period, even in case of high permeability anisotropy. The observations also suggest that the cyclical flushing and re-salinification of shelf sediments that takes place over glacial &#8211; interglacial cycles is an asymmetrical process, which favours storage of freshened pore fluid in the long run.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.