AbstrakPergeseran datangnya musim hujan akan menyebabkan kegagalan panen dan akan merugikan petani. Untuk mengatasi hal ini dilakukan penelitian yang bertujuan untuk memprediksi pola tanam padi dan waktu tanam yang sesuai berdasarkan tabiat data curah hujan selama lima belas tahun (2001–2015) di Kabupaten Kerinci Provinsi Jambi. Daerah penelitian meliputi empat kecamatan yang didasarkan dari luasnya sawah tadah hujan. Metode yang digunakan dalam penelitian ini adalah metode deskriptif dengan teknik survei. Prediksi curah hujan digunakan metode analisis Fuzzy Logic berbasis ANFIS. Data yang digunakan adalah data curah hujan bulanan observasi 10 tahun yaitu dari tahun 2006–2015. Data diambil dari Stasiun Iklim Jambi. Data asimilasi diambil selama 15 tahun yaitu dari tahun 2001–2015. Hasil Penelitian ini menunjukkan pola curah hujan bulanan rata-rata di setiap kecamatan berbentuk pola ekuatorial dengan dua puncak curah hujan yaitu pada bulan April dan November. Waktu tanam dapat dilakukan dua kali dalam setahun, waktu tanam pertama dimulai pada bulan Maret dan waktu tanam kedua pada bulan Oktober. Hasil analisa dapat digunakan pemerintah Kabupaten Kerinci sebagai acuan dalam memberikan sosialisasi kepada petani mengenai pola tanam dan waktu tanam padi sehingga dapat menghasilkan panen yang optimal.Abstract The shift in the coming rainy season will cause crop failure and will harm the farmers. To overcome this study conducted to predict rice cropping pattern and appropriate planting time based on the characteristics of rainfall data for fifteen years (2001–2015) in Kerinci Regency of Jambi Province. The research area covers four districts based on the number of rainfall rice fields. The method used a descriptive method with the survey technique. The prediction of rainfall is used ANFIS Fuzzy Logic analysis method. The data is used the monthly rainfall data with observation for 10 years from 2006 to 2015. The data had taken from the Jambi Climate Station. The assimilation data had taken for 15 years from 2001 to 2015. The results of this study showed the average monthly rainfall pattern in each sub-district in the form of equatorial pattern with two peaks rainfall that is in April and November. Planting time can be done twice a year, the first planting time begins in March and the second planting time in October. The result of analysis can be used by the Kerinci Regency government as a reference in providing socialization to farmers regarding cropping patterns and planting time of rice so that they can produce maximum crop yield.
This study aims to analyze and map the conditional courses at the Tadris Physics Study Program, Faculty of Tarbiyah and Teacher Training, Sulthan Thaha Saifuddin State Islamic University Jambi. This research is an applied science research, data analysis using quantitative descriptive technique. The data is in the form of documenting the value of the 2019/2020 Tadris Physics Study Program students. The research sample consisted of 11 sample subjects from 19 population subjects. The data is processed using Backpropagation Neural Network with Python programming language. Validation and accuracy of prediction results using Mean Absolute Percentage Error and determinant coefficient R Square. The prediction results of conditional courses obtained are accurate and valid with MAPE values <10% (very good) and R Square values close to 1. This study shows that the mapping of prerequisite courses set by the study program is appropriate, except for Basic Physics Courses. 2 (R 0.216) and Mathematics Physics Course I (R 0.50) require additional other prerequisite courses.Keywords: mapping; conditional courses, backpropagation neural network
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.