Abstract. Near the northern border of Sumatra, the right-lateral strike-slip Sumatran Fault Zone splits into two branches and extends into the offshore, as revealed by seismic sounding surveys. However, due to its strike-slip faulting characteristics, the Sumatran Fault Zone’s activity is rarely believed to cause tsunami hazards in this region. According to two reprocessed reflection seismic profiles, the extended Sumatran Fault Zone is strongly associated with chaotic facies, indicating that large submarine landslides have been triggered. Coastal steep slopes and new subsurface characteristics of submarine landslide deposits were mapped using recently acquired high-resolution shallow bathymetry data. Slope stability analysis revealed some targets with steep morphology to be close to failure. In an extreme case, an earthquake of Mw 7 or more occurred, and the strong ground shaking triggered a submarine landslide off the northern shore of Sumatra. Based on a simulation of tsunami wave propagation in shallow water, the results of this study indicate a potential tsunami hazard from a submarine landslide triggered by the strike-slip fault system. The landslide tsunami hazard assessment and early warning systems in this study area can be improved on the basis of this proposed scenario.
<p>&#160;&#160;&#160;&#160;&#160;&#160;&#160; Submarine sand waves are known to be induced by tidal currents and their migration has become an important issue since it may affect seafloor installations. In Taiwan Strait, widely spreading sand waves have been recognized on the Changyun Ridge, a tide-dominated giant sand ridge offshore western Taiwan. However, due to lacking of high-resolution and repeated geophysical surveys before, detailed characteristics and migrating features of the sand waves in Taiwan Strait were poorly understood. As new multibeam bathymetric and seismic data were collected repeatedly during 2016 - 2018 for offshore wind farm projects, we can now advance the understanding of sand wave characteristics and migration patterns in the study area. We apply a geostatistical analysis method on bathymetry data to reveal distribution and spatial characteristics of the sand waves, and estimate its migration pattern by using an updated spatial cross-correlation method. Then, sedimentary features, internal structures and thicknesses of sand waves are observed and estimated on high-resolution seismic profiles. Our results show that the study area is mostly superimposed by multi-scaled sandy rhythmic bed forms. However, the geomorphological and migrating characteristics of the sand waves are complicated. Their wavelengths range from 80 to 200 m, heights range from 1.5 to 8 m, and crests are generally oriented in the WNW-ESE direction. Obvious sand wave migration was detected from repeated high-resolution multi-beam data between 2016 and 2018, and migration distances can be up to ~150 m in 15 months. The average elevation change of the seafloor over the whole survey area is ~3.0 m, with a maximum value of 6.9 m. Moreover, the sand waves can migrate over 30 m with ~2.5 m elevation change in 2 months and migrate over 5 m with ~1 m elevation change in 15 days. The results also show that the orientation of wave movement can be reversed even within a small distance. By identifying the base of sand wave on seismic profiles, the thicknesses of sand waves are found ranging from 1 to 10 meters. The base of wave structure become slightly deeper from nearshore to offshore. Our results indicate that the thickness of sand waves increases with degree of asymmetry and migration rate. By bathymetric and reflection seismic data analyses, systematic spatial information of sand waves in the study area are established, and we suggest that not only tidal currents can affect sand wave migration patterns, but also wave structures and thicknesses play important roles in sand wave migrating processes and related geomorphological changes.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.