Synthesis and characterization of TiO2 films sensitized with chlorophyll and metal-chlorophyll complex (M=Zn2+, Co2+) were carried out. Chlorophyll isolated from cassava leaves shows absorption peaks on the UV-Vis spectra in the Soret band area (415 nm) and Q band area (665 nm). The metal-chlorophyll complex was prepared from the reaction of the isolated chlorophyll and ZnCl2 (for Zn2+-chlorophyll); CoCl2.6H2O (for Co2+-chlorophyll) under reflux condition at 65 ºC with a mole ratio of 1:1. The UV-Vis spectra of the isolated products showed a hypsochromic shift to 410 nm and 660 nm for Zn2+-chlorophyll whereas the spectrum of the Co2+-chlorophyll product demonstrated the shifts to 403 nm and 661 nm. These hypsochromic shifts are proposed to be a metal-to-ligand charge transfer (MLCT) transition as a result of chlorophyll metalation. The FTIR spectra of chlorophyll and metal-chlorophyll complexes have a similar pattern despite changes in the absorption of vibrational energy in several functional groups. The absorption of the C=N group shifted from 1372 cm-1 to 1368 cm-1 for both of the complexes, the C=C group of aromatic shifted from 1451 cm-1 to 1447 cm-1 (Zn2+-chlorophyll) and from 1451 cm-1 to 1445 cm-1 (Co2+-chlorophyll), and the C=O group of ketones shifted from 1627 cm-1 to 1645 cm-1 (Zn2+-chlorophyll) and from 1627 cm-1 to 1646 cm-1 (Co2+-chlorophyll). The shift pattern of the absorption peaks on the FTIR spectra indicates the coordination of metal ions towards the N atom in the pyrrole ring in the porphyrin structure of the chlorophyll. When the isolated chlorophyll as well as the chlorphyll complexes was sensitized on the surface of TiO2, variation of bandgap energy was observed. The calculation using the Tauc Plot method resulted in the bandgap energy of films of TiO2 at 3.20 eV, TiO2/chlorophyll at 2.97 eV, TiO2/Zn2+-chlorophyll at 2.87 eV, and TiO2/Co2+-chlorophyll at 2.90 eV
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.