This article describes a new, accurate and highly specific high performance liquid chromatographic method with UV detection (HPLC-UV) for the simultaneous determination of cetirizine HCl (CZ), chlorphenamine maleate (CPM), loratadine (LTD), domperidone (DP), buclizine (BZ) and meclizine (MZ) in pharmaceutical dosage form and human serum, involving pyridoxine (PYD) as the internal standard. The mobile phase consists of heptane sulphonic acid salt buffer and acetonitrile, drawn at a flow rate of 1.0 mL min À1 using a symmetry C 18 column with UV detection at 230 nm. The intraday and inter-day precision measurements showed coefficients of variation always less than one. The calibration curve was tested in the range of 10-2150 ng mL À1 and the correlation coefficient of >0.9990 in all cases was obtained. The averages of the absolute and relative recoveries were found to be in the range of 98 to 102%. Up to six antihistamines were separated in the same chromatogram with good resolution. The proposed HPLC method has reasonable applications in pharmaceutical tablet dosage form and pharmacokinetics studies.
Background: Simple and sensitive spectrophotometric method is described based on the reaction of drug (gabapentin) with ninhydrin in pure form and in pharmaceutical preparations. Methods: Complex formed during this reaction is measured at 575 nm as a function of time. Kinetic study involve initial-rate, rate-constant and fixed-time (80 minutes) procedures to determine the concentration of the drug.
Groundwater from 33 monitoring of peripheral wells of Karachi, Pakistan were evaluated in terms of pre- and post-monsoon seasons to find out the impact of storm water infiltration, as storm water infiltration by retention basin receives urban runoff water from the nearby areas. This may increase the risk of groundwater contamination for heavy metals, where the soil is sandy and water table is shallow. Concentration of dissolved oxygen is significantly low in groundwater beneath detention basin during pre-monsoon season, which effected the concentration of zinc and iron. The models of trace metals shown in basin groundwater reflect the land use served by the basins, while it differed from background concentration as storm water releases high concentration of certain trace metals such as copper and cadmium. Recharge by storm water infiltration decreases the concentration and detection frequency of iron, lead, and zinc in background groundwater; however, the study does not point a considerable risk for groundwater contamination due to storm water infiltration.
Microbial populations within the rhizosphere have been considered as prosperous repositories with respect to bioremediation aptitude. Among various environmental contaminants, effluent from textile industries holds a huge amount of noxious colored materials having high chemical oxygen demand concentrations causing ecological disturbances. The study was aimed to explore the promising mycobiome of rhizospheric soil for the degradation of azo dyes to develop an efficient system for the exclusion of toxic recalcitrants. An effluent sample from the textile industry and soil samples from the rhizospheric region of Musa acuminata and Azadirachta indica were screened for indigenous fungi to decolorize Congo red, a carcinogenic diazo dye, particularly known for its health hazards to the community. To develop a bio-treatment process, Aspergillus terreus QMS-1 was immobilized on pieces of Luffa cylindrica and exploited in stirred tank bioreactor under aerobic and optimized environment. Quantitative estimation of Congo red decolorization was carried out using UV-Visible spectrophotometer. The effects of fungal immobilization and biosorption on the native structure of Luffa cylindrica were evaluated using a scanning electron microscope. A. terreus QMS-1 can remove (92%) of the dye at 100 ppm within 24 h in the presence of 1% glucose and 1% ammonium sulphate at pH 5.0. The operation of the bioreactor in a continuous flow for 12 h with 100 ppm of Congo red dye in simulated textile effluent resulted in 97% decolorization. The stirred tank bioreactor was found to be a dynamic, well maintained, no sludge producing approach for the treatment of textile effluents by A. terreus QMS-1 of the significant potential for decolorization of Congo red.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.