The objective of this research is to optimize the alkaline treatment variables, including sodium hydroxide (NaOH) concentration, soaking, and drying time, that influence the mechanical behavior of bamboo fiber-reinforced epoxy composites. In this study, a Box–Behnken design (BBD) of the response surface methodology (RSM) was employed to design an experiment to investigate the mercerization effect of bamboo fiber-reinforced epoxy composites. The evaluation of predicted tensile strength as a variable parameter of bamboo fiber (Bambusa vulgaris) reinforced epoxy composite structures was determined using analysis of variance (ANOVA) of the quadratic model. In this study, a total of 17 experiment runs were measured and a significant regression for the coefficient between the variables was obtained. Further, the triangular and square core structures made of treated and untreated bamboo fiber-reinforced epoxy composites were tested under compressive loading. It was found that the optimum mercerization condition lies at 5.81 wt.% of the NaOH, after a soaking time of 3.99 h and a drying time of 72 h. This optimum alkaline treatment once again had a great effect on the structures whereby all the treated composite cores with square and triangular structures impressively outperformed the untreated bamboo structures. The treated triangular core of bamboo reinforced composites gave an outstanding performance compared to the treated and untreated square core composite structures for compressive loading and specific energy absorbing capability.
Utilizing agro-waste material such as rice husk (RH) and coco peat (CP) reinforced with thermoplastic resin to produce low-cost green composites is a fascinating discovery. In this study, the effectiveness of these blended biocomposites was evaluated for their physical, mechanical, and thermal properties. Initially, the samples were fabricated by using a combination of melt blend internal mixer and injection molding techniques. Increasing in RH content increased the coupons density. However, it reduced the water vapor kinetics sorption of the biocomposite. Moisture absorption studies disclosed that water uptake was significantly increased with the increase of coco peat (CP) filler. It showed that the mechanical properties, including tensile modulus, flexural modulus, and impact strength of the 15% RH—5% CP reinforced acrylonitrile-butadiene-styrene (ABS), gave the highest value. Results also revealed that all RH/CP filled composites exhibited a brittle fracture manner. Observation on the tensile morphology surfaces by using a scanning electron microscope (SEM) affirmed the above finding to be satisfactory. Therefore, it can be concluded that blend-agriculture waste reinforced ABS biocomposite can be exploited as a biodegradable material for short life engineering application where good mechanical and thermal properties are paramount.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.