Self-bottomed mussel beds are dominant feature of ecosystem-scale self-organization. Regular spatial patterns of mussel beds in inter-tidal zone are typical, aligned perpendicular to the average incoming tidal flow. In this paper, we consider a two-variable partial differential equations model of young mussel beds. Our aim is to study the existence and stability of periodic traveling waves in a one-parameter family of solutions. We consider a parameter regime to show pattern existence in the model of young mussel beds. In addition, it is found that the periodic traveling waves changes their stability by two ways: Hopf type and Eckhaus type. We explain this stability by the calculation of essential spectra at different grid points in the two-dimensional parameter plane.
GANIT J. Bangladesh Math. Soc.Vol. 38 (2018) 1-10
Self-organized and spatially periodic banded vegetation patterns have been observed in many semi-arid ecosystems. In order to understand the mechanism of these patterns, we consider a system of reaction-advection-diffusion equations in a two-variable model of desertification. This work deals with the investigation of the existence of periodic traveling waves in a one-parameter family of solutions. In addition, we investigate the existence of periodic traveling waves as a function of water transport parameter in the model.
GANIT J. Bangladesh Math. Soc.Vol. 38 (2018) 27-46
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.