This paper proposes a new cloud intrusion detection system for detecting the intruders in a traditional hybrid virtualized, cloud environment. The paper introduces an effective feature selection algorithm called Temporal Constraint based on Feature Selection algorithm and also proposes a classification algorithm called hybrid decision tree. This hybrid decision tree has been developed by extending the Enhanced C4.5 algorithm an existing decision tree based classifier. Furthermore, the experiments conducted on the sample Cloud Intrusion Detection Datasets (CIDD) show that the proposed cloud intrusion detection system provides better detection accuracy than the existing work and reduces the false positive rate.
<p>Cardiovascular disease (CVD) is the leading cause of deaths worldwide. In 2017, CVD contributed to 13,503 deaths in Malaysia. The current approaches for CVD prediction are usually invasive and costly. Machine learning (ML) techniques allow an accurate prediction by utilizing the complex interactions among relevant risk factors. This study presents a case–control study involving 60 participants from The Malaysian Cohort, which is a prospective population-based project. Five parameters, namely, the R–R interval and root mean square of successive differences extracted from electrocardiogram (ECG), systolic and diastolic blood pressures, and total cholesterol level, were statistically significant in predicting CVD. Six ML algorithms, namely, linear discriminant analysis, linear and quadratic support vector machines, decision tree, k-nearest neighbor, and artificial neural network (ANN), were evaluated to determine the most accurate classifier in predicting CVD risk. ANN, which achieved 90% specificity, 90% sensitivity, and 90% accuracy, demonstrated the highest prediction performance among the six algorithms. In summary, by utilizing ML techniques, ECG data can serve as a good parameter for CVD prediction among the Malaysian multiethnic population.</p>
Significant amount of people suffer from Diabetic Retinopathy (DR), which is one of the major causes of vision loss. The incidence of this disease is even higher due to not being diagnosed at the right time. On numerous occasions, due to neglect and poor care, diabetic retinopathy can lead to significant damage to the eyes. That is why, early diagnosis of eye diseases, proper treatment and care for the disease can prevent vision loss. Referral of eyes with diabetic retinopathy for advanced assessment and treatment would aid in reducing the chances of vision loss, allowing proper diagnoses. The purpose of this study is to develop resilient and flexible diagnostic techniques for the detection of DR and to identify dynamic DR grading using residual networks to facilitate the network training that are significantly intense than previously used networks. Even though lots of research has been done on DR, its identifications remains challenging due to time and space complexity along with higher accuracy specificity. Here, a residual learning framework has been proposed that overcomes the challenges while efficiently detecting DR. Hence, using a high-end Graphics Processor Unit (GPU) the model has been trained on the publicly available Kaggle dataset and empirical evidence has been provided in order to support the results with a sensitivity of 95.6% and an accuracy of 93.20%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.