Background and AimsPhysical exercise leads to substantial adaptive responses in skeletal muscles and plays a central role in a healthy life style. Since exercise induces major systemic responses, underlying cellular mechanisms are difficult to study in vivo. It was therefore desirable to develop an in vitro model that would resemble training in cultured human myotubes.MethodsElectrical pulse stimulation (EPS) was applied to adherent human myotubes. Cellular contents of ATP, phosphocreatine (PCr) and lactate were determined. Glucose and oleic acid metabolism were studied using radio-labeled substrates, and gene expression was analyzed using real-time RT-PCR. Mitochondrial content and function were measured by live imaging and determination of citrate synthase activity, respectively. Protein expression was assessed by electrophoresis and immunoblotting.ResultsHigh-frequency, acute EPS increased deoxyglucose uptake and lactate production, while cell contents of both ATP and PCr decreased. Chronic, low-frequency EPS increased oxidative capacity of cultured myotubes by increasing glucose metabolism (uptake and oxidation) and complete fatty acid oxidation. mRNA expression level of pyruvate dehydrogenase complex 4 (PDK4) was significantly increased in EPS-treated cells, while mRNA expressions of interleukin 6 (IL-6), cytochrome C and carnitin palmitoyl transferase b (CPT1b) also tended to increase. Intensity of MitoTracker®Red FM was doubled after 48 h of chronic, low-frequency EPS. Protein expression of a slow fiber type marker (MHCI) was increased in EPS-treated cells.ConclusionsOur results imply that in vitro EPS (acute, high-frequent as well as chronic, low-frequent) of human myotubes may be used to study effects of exercise.
Insulin resistance in skeletal muscle in vivo is associated with reduced lipid oxidation and lipid accumulation. It is still uncertain whether changes in lipid metabolism represent an adaptive compensation at the cellular level or a direct expression of a genetic trait. Studies of palmitate metabolism in human myotubes established from control and type 2 diabetic subjects may solve this problem, as genetic defects are preserved and expressed in vitro. In this study, total uptake of palmitic acid was similar in myotubes established from both control and type 2 diabetic subjects under basal conditions and acute insulin stimulation. Myotubes established from diabetic subjects expressed a primary reduced palmitic acid oxidation to carbon dioxide with a concomitantly increased esterification of palmitic acid into phospholipids compared with control myotubes under basal conditions. Triacylglycerol (TAG) content and the incorporation of palmitic acid into diacylglycerol (DAG) and TAG at basal conditions did not vary between the groups. Acute insulin treatment significantly increased palmitate uptake and incorporation of palmitic acid into DAG and TAG in myotubes established from both study groups, but no difference was found in myotubes established from control and diabetic subjects. These results indicate that the reduced lipid oxidation in diabetic skeletal muscle in vivo may be of genetic origin; it also appears that TAG metabolism is not primarily affected in diabetic muscles under basal physiological conditions. Diabetes 53:542-548, 2004
Regular physical activity protects against several types of diseases. This may involve altered secretion of signaling proteins from skeletal muscle. Our aim was to identify the most abundantly secreted proteins in cultures of human skeletal muscle cells and to monitor their expression in muscles of strength-training individuals. A total of 236 proteins were detected by proteome analysis in medium conditioned by cultured human myotubes, which was narrowed down to identification of 18 classically secreted proteins expressed in skeletal muscle, using the SignalP 3.0 and Human Genome Expression Profile databases together with a published mRNA-based reconstruction of the human skeletal muscle secretome. For 17 of the secreted proteins, expression was confirmed at the mRNA level in cultured human myotubes as well as in biopsies of human skeletal muscles. RT-PCR analyses showed that 15 of the secreted muscle proteins had significantly enhanced mRNA expression in m. vastus lateralis and/or m. trapezius after 11 wk of strength training among healthy volunteers. For example, secreted protein acidic and rich in cysteine, a secretory protein in the membrane fraction of skeletal muscle fibers, was increased 3- and 10-fold in m. vastus lateralis and m. trapezius, respectively. Identification of proteins secreted by skeletal muscle cells in vitro facilitated the discovery of novel responses in skeletal muscles of strength-training individuals.
Decreased triacylglycerol synthesis within hepatocytes due to decreased diacylglycerol acyltransferase (DGAT) activity has been suggested to be an important mechanism by which diets rich in fish oil lower plasma triacylglycerol levels. New findings suggest that eicosapentaenoic acid (EPA), and not docosahexaenoic acid (DHA), lowers plasma triacylglycerol by increased mitochondrial fatty acid oxidation and decreased availability of fatty acids for triacylglycerol synthesis. To contribute to the understanding of the triacylglycerol-lowering mechanism of fish oil, the different metabolic properties of EPA and DHA were studied in rat liver parenchymal cells and isolated rat liver organelles. EPA-CoA was a poorer substrate than DHA-CoA for DGAT in isolated rat liver microsomes, and in the presence of EPA, a markedly lower value for the triacyl[3H]glycerol/diacyl[3H]glycerol ratio was observed. The distribution of [1-14C]palmitic acid was shifted from incorporation into secreted glycerolipids toward oxidation in the presence of EPA (but not DHA) in rat liver parenchymal cells. [1-14C]EPA was oxidized to a much greater extent than [1-14C]DHA in rat liver parenchymal cells, isolated peroxisomes, and especially in purified mitochondria. As the oxidation of EPA was more effective and sensitive to the CPT-I inhibitor, etomoxir, when measured in a combination of both mitochondria and peroxisomes, we hypothesized that both are involved in EPA oxidation, whereas DHA mainly is oxidized in peroxisomes. In rats, EPA treatment lowered plasma triacylglycerol and increased hepatic mitochondrial fatty acid oxidation and carnitine palmitoyltransferase (CPT)-I activity in both the presence and absence of malonyl-CoA. Whereas only EPA treatment increased the mRNA levels of CPT-I, DHA treatment increased the mRNA levels of peroxisomal fatty acyl-CoA oxidase and fatty acid binding protein more effectively than EPA treatment. In conclusion, EPA and DHA affect cellular organelles in relation to their substrate preference. The present study strongly supports the hypothesis that EPA, and not DHA, lowers plasma triacylglycerol by increased mitochondrial fatty acid oxidation.
Circulating natriuretic peptide (NP) levels are reduced in obesity and predict the risk of type 2 diabetes (T2D). Since skeletal muscle was recently shown as a key target tissue of NP, we aimed to investigate muscle NP receptor (NPR) expression in the context of obesity and T2D. Muscle NPRA correlated positively with wholebody insulin sensitivity in humans and was strikingly downregulated in obese subjects and recovered in response to diet-induced weight loss. In addition, muscle NP clearance receptor (NPRC) increased in individuals with impaired glucose tolerance and T2D. Similar results were found in obese diabetic mice. Although no acute effect of brain NP (BNP) on insulin sensitivity was observed in lean mice, chronic BNP infusion improved blood glucose control and insulin sensitivity in skeletal muscle of obese and diabetic mice. This occurred in parallel with a reduced lipotoxic pressure in skeletal muscle due to an upregulation of lipid oxidative capacity. In addition, chronic NP treatment in human primary myotubes increased lipid oxidation in a PGC1a-dependent manner and reduced palmitate-induced lipotoxicity. Collectively, our data show that activation of NPRA signaling in skeletal muscle is important for the maintenance of long-term insulin sensitivity and has the potential to treat obesity-related metabolic disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.