In this article, we review intraspecific studies of basal metabolic rate (BMR) that address the correlation between diet quality and BMR. The "food-habit hypothesis" stands as one of the most striking and often-mentioned interspecific patterns to emerge from studies of endothermic energetics. Our main emphasis is the explicit empirical comparison of predictions derived from interspecific studies with data gathered from within-species studies in order to explore the mechanisms and functional significance of the putative adaptive responses encapsulated by the food-habit hypothesis. We suggest that, in addition to concentrating on the relationship among diet quality, internal morphology, and BMR, new studies should also attempt to unravel alternative mechanisms that shape the interaction between diet and BMR, such as enzymatic plasticity, and the use of energy-saving mechanisms, such as torpor. Another avenue for future study is the measurement of the effects of diet quality on other components of the energy budget, such as maximum thermogenic and sustainable metabolic rates. It is possible that the effects of diet quality operate on such components rather than directly on BMR, which might then push or pull along changes in these traits. Results from intraspecific studies suggest that the factors responsible for the association between diet and BMR at an ecological timescale might not be the same as those that promoted the evolution of this correlation. Further analyses should consider how much of a role the proximate and ultimate processes have played in the evolution of BMR.
We studied how food abundance and consumption regulates torpor use and internal organ size in the Chilean mouse-opossum Thylamys elegans (Dielphidae), a small nocturnal marsupial, endemic in southern South America. We predicted that exposure to food rations at or above the minimum energy levels necessary for maintenance would not lead to any signs of torpor, while reducing food supply to energy levels below maintenance would lead to marked increases in frequency, duration and depth of torpor bouts. We also analyzed the relationship between food availability and internal organ mass. We predicted a positive relationship between food availability and internal organ size once the effect of body size is removed. Animals were randomly assigned to one of two groups and fed either 70, 100 or 130% of their daily energy requirement (DER). We found a positive and significant correlation between %DER and body temperature, and also between %DER and minimum body temperature. In contrast, for torpor frequency, duration and depth, we found a significant negative correlation with %DER. Finally, we found a significant positive correlation between the %DER and small intestine and ceacum dry mass. We demonstrate that when food availability is limited, T. elegans has the capacity to reduce their maintenance cost by two different mechanisms, that is, increasing the use of torpor and reducing organ mass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.