The Internet of Things (IoT) concept has attracted a lot of attention from the research and innovation community for a number of years already. One of the key drivers for this hype towards the IoT is its applicability to a plethora of different application domains. However, infrastructures enabling experimental assessment of IoT solutions are scarce. Being able to test and assess the behavior and the performance of any piece of technology (i.e., protocol, algorithm, application, service, etc.) under real-world circumstances is of utmost importance to increase the acceptance and reduce the time to market of these innovative developments. This paper describes the federation of eleven IoT deployments from heterogeneous application domains (e.g., smart cities, maritime, smart building, crowd-sensing, smart grid, etc.) with over 10,000 IoT devices overall which produce hundreds of thousands of observations per day. The paper summarizes the resources that are made available through a cloud-based platform. The main contributions from this paper are twofold. In the one hand, the insightful summary of the federated data resources are relevant to the experimenters that might be seeking for an experimental infrastructure to assess their innovations. On the other hand, the identification of the challenges met during the testbed integration process, as well as the mitigation strategies that have been implemented to face them, are of interest for testbed providers that can be considering to join the federation.
Nowadays, the transformations of cities into smart cities is a crucial factor in improving the living conditions of the inhabitants as well as addressing emergency situations under the concept of public safety and property loss. In this context, many sensing systems have been designed and developed that provide fire detection and gas leakage alerts. On the other hand, new technologies such edge computing have gained significant attention in recent years. Moreover, the development of recent intelligent applications in IoT aims to integrate several types of systems with automated next-generation emergency calls in case of a serious accident. Currently, there is a lack of studies that combine all the aforementioned technologies. The proposed smart building sensor system, SB112, combines a small-size multisensor-based (temperature, humidity, smoke, flame, CO, LPG, and CNG) scheme with an open-source edge computing framework and automated Next Generation (NG) 112 emergency call functionality. It involves crucial actors such as IoT devices, a Public Safety Answering Point (PSAP), the middleware of a smart city platform, and relevant operators in an end-to-end manner for real-world scenarios. To verify the utility and functionality of the proposed system, a representative end-to-end experiment was performed, publishing raw measurements from sensors as well as a fire alert in real time and with low latency (average latency of 32 ms) to the middleware of a smart city platform. Once the fire was detected, a fully automatic NG112 emergency call to a PSAP was performed. The proposed methodology highlights the potential of the SΒ112 system for exploitation by decision-makers or city authorities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.