This paper describes the deployment and experimentation architecture of the Internet of Things experimentation facility being deployed at Santander city. The facility is implemented within the SmartSantander project, one of the projects of the Future Internet Research and Experimentation initiative of the European Commission and represents a unique in the world city-scale experimental research facility. Additionally, this facility supports typical applications and services of a smart city. Tangible results are expected to influence the definition and specification of Future Internet architecture design from viewpoints of Internet of Things and Internet of Services. The facility comprises a large number of Internet of Things devices deployed in several urban scenarios which will be federated into a single testbed. In this paper the deployment being carried out at the main location, namely Santander city, is described. Besides presenting the current deployment, in this article the main insights in terms of the architectural design of a large-scale IoT testbed are presented as well. Furthermore, solutions adopted for implementation of the different components addressing the required testbed functionalities are also sketched out. The IoT experimentation facility described in this paper is conceived to provide a suitable platform for large scale experimentation and evaluation of IoT concepts under real-life conditions.
The Internet of Things (IoT) is unanimously identified as one of the main technology enablers for the development of future intelligent environments. However, the current IoT landscape is suffering from large fragmentation with many platforms and vendors competing with their own solution. This fragmented scenario is now jeopardizing the uptake of the IoT, as investments are not carried out partly because of the fear of being captured in lock-in situations. To overcome these fears, interoperability solutions are being put forward in order to guarantee that the deployed IoT infrastructure, independently of its manufacturer and/or platform, can exchange information, data and knowledge in a meaningful way. This paper presents a Global IoT Services (GIoTS) use case demonstrating how semantic interoperability among five different smart city IoT deployments can be leveraged to develop a smart urban mobility service. The application that has been developed seamlessly consumes data from them for providing parking guidance and mobility suggestions at the five locations (Santander and Barcelona in Spain and Busan, Seoul and Seongnam in South Korea) where the abovementioned IoT deployments are installed. The paper is also presenting the key aspects of the system enabling the interoperability among the three underlying heterogeneous IoT platforms.
This paper describes an ultra-low power (ULP) single chip transceiver for wireless body area network (WBAN) applications. It supports on-off keying (OOK) modulation, and it operates in the 2.36-2.4 GHz medical BAN and 2.4-2.485 GHz ISM bands. It is implemented in 90 nm CMOS technology. The direct modulated transmitter transmits OOK signal with 0 dBm peak power, and it consumes 2.59 mW with 50% OOK. The transmitter front-end supports up to 10 Mbps. The transmitter digital baseband enables digital pulse-shaping to improve spectrum efficiency. The super-regenerative receiver front-end supports up to 5 Mbps with -75 dBm sensitivity. Including the digital part, the receiver consumes 715 μW at 1 Mbps data rate, oversampled at 3 MHz. At the system level the transceiver achieves PER=10 (-2) at 25 meters line of site with 62.5 kbps data rate and 288 bits packet size. The transceiver is integrated in an electrocardiogram (ECG) necklace to monitor the heart's electrical property.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.