Identification of science-gifted students remains a problem due to the lack of availability of a valid and reliable identification tool. There are several instruments published to identify science-gifted students in other countries, but it is difficult to assume the reliability and validity of these tools specifically for Filipinos' socially constructed notion of science giftedness. During initial stages of identification, some science-gifted students are excluded in nomination and selection because teachers are not particularly adept at evaluating the characteristics of these students. This paper reports the validity and reliability of an adapted 60-item checklist on science giftedness of Filipino students. The subjects for this study are 365 first-year high school students from various science-oriented secondary schools with different programs in the Philippines. The checklist was completed through self-rating. Exploratory factor analysis using the principal component analysis as the extraction method identified 12 factor components: scientific awareness, rational observation, experimentation, application, visualization, initiative, quantification, oblivion in learning, engrossment in learning, integrated learning, and acquiring of skills. Overall, results show that the Cronbach alpha reliability coefficient is 0.954, which shows that the checklist is reliable in determining giftedness in the context of the Philippines. When students enrolled in four different science-gifted programs used this checklist to evaluate themselves there were significant differences in the range of scores. Further testing with an improved checklist using a wider demographic profile should be conducted. This study suggests that tools used to identify science giftedness must not only be domain specific, but should also be holistic and assess other facets of giftedness.
A concentrator lens system was designed for a multi-junction solar cell, CDO-100-C3MJ, with an added feature − a convex lens was added above the Fresnel lens in order to improve the output power of the setup and reduce the need for the use of solar trackers. The convex lens setup was tested with the Fresnel lens setup over a 3-day photoperiod by measuring the voltage, current, irradiance, and temperature at every hour. The results showed that the convex lens setup produced 1.94% more power, but only at around midday. The increase in power is due to the convex lens that focuses a greater amount of irradiance on the solar cell over the course of the day.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.