Information and communication infrastructures underwent a rapid and extreme decentralization process over the past decade: From a world of statically and partially connected central servers rose an intricate web of millions of information sources loosely connecting one to another. Today, we expect to witness the extension of this revolution with the wide adoption of meta-data standards like RDF or OWL underpinning the creation of a semantic web. Again, we hope for global properties to emerge from a multiplicity of pair-wise, local interactions, resulting eventually in a self-stabilizing semantic infrastructure. This paper represents an effort to summarize the conditions under which this revolution would take place as well as an attempt to underline its main properties, limitations and possible applications. The work presented in this paper reflects the current status of a collaborative effort initiated by the IFIP 2.6 Working Group on Data Semantics.
Abstract. Efficient subsumption checking, deciding whether a subscription or publication is covered by a set of previously defined subscriptions, is of paramount importance for publish/subscribe systems. It provides the core system functionality-matching of publications to subscriber needs expressed as subscriptions-and additionally, reduces the overall system load and generated traffic since the covered subscriptions are not propagated in distributed environments. As the subsumption problem was shown previously to be co-NP complete and existing solutions typically apply pairwise comparisons to detect the subsumption relationship, we propose a 'Monte Carlo type' probabilistic algorithm for the general subsumption problem. It determines whether a publication/subscription is covered by a disjunction of subscriptions in O(k m d), where k is the number of subscriptions, m is the number of distinct attributes in subscriptions, and d is the number of tests performed to answer a subsumption question. The probability of error is problem-specific and typically very small, and sets an upper bound on d. Our experimental results show significant gains in term of subscription set reduction which has favorable impact on the overall system performance as it reduces the total computational costs and networking traffic. Furthermore, the expected theoretical bounds underestimate algorithm performance because it performs much better in practice due to introduced optimizations, and is adequate for fast forwarding of subscriptions in case of high subscription rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.