The presence of both HPV and EBV gene sequences in most of the same normal, benign, and malignant prostate specimens is particularly noteworthy because of recent experimental evidence demonstrating that EBV and HPV can collaborate to increase proliferation of cultured cervical cells. Because the presence of EBV and HPV in normal, benign, and malignant prostate tissues appears to be ubiquitous, it is possible that they are harmless. On the other hand HPV type 18 in particular, has high oncogenic potential and may be associated with some prostate cancers. The identification of HPV associated koilocytes in prostate cancer specimens is an indication of HPV infection and potential oncogenic influences of human papillomavirus in prostate cancer.
MicroRNAs are small non-coding RNA molecules that control gene expression post-transcriptionally, and are known to be altered in many diseases including breast cancer. The aim of this study was to determine the relevance of miR-379 in breast cancer. miR-379 expression was quantified in clinical samples including tissues from breast cancer patients (n=103), healthy controls (n=30) and patients with benign breast disease (n=35). The level of miR-379 and its putative target Cyclin B1 were investigated on all breast tissue specimens by RQ-PCR. Potential relationships with gene expression and patient clinicopathological details were also determined. The effect of miR-379 on Cyclin B1 protein expression and function was investigated using western blot, immunohistochemistry and proliferation assays respectively. Finally, the levels of circulating miR-379 were determined in whole blood from patients with breast cancer (n=40) and healthy controls (n=34). The level of miR-379 expression was significantly decreased in breast cancer (Mean(SEM) 1.9 (0.09) Log10 Relative Quantity (RQ)) compared to normal breast tissues (2.6 (0.16) Log10 RQ, p<0.01). miR-379 was also found to decrease significantly with increasing tumour stage. A significant negative correlation was determined between miR-379 and Cyclin B1 (r=-0.31, p<0.001). Functional assays revealed reduced proliferation (p<0.05) and decreased Cyclin B1 protein levels following transfection of breast cancer cells with miR-379. Circulating miR-379 was not significantly dysregulated in patients with breast cancer compared to healthy controls (p=0.42). This data presents miR-379 as a novel regulator of Cyclin B1 expression, with significant loss of the miRNA observed in breast tumours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.