Despite the fundamental roles of sialyl- and fucosyltransferases in mammalian physiology, there are few pharmacological tools to manipulate their function in a cellular setting. Although fluorinated analogs of the donor substrates are well-established transition state inhibitors of these enzymes, they are not membrane permeable. By exploiting promiscuous monosaccharide salvage pathways, we show that fluorinated analogs of sialic acid and fucose can be taken up and metabolized to the desired donor substrate-based inhibitors inside the cell. Due to the existence of metabolic feedback loops, they also act to prevent the de novo synthesis of the natural substrates, resulting in a global, family-wide shutdown of sialyl- and/or fucosyltransferases and remodeling of cell surface glycans. As an example of the functional consequences, the inhibitors drastically reduce expression of the sialylated and fucosylated ligand Sialyl Lewis X on myeloid cells, resulting in loss of binding to selectins and impaired leukocyte rolling.
Protein O-glycosylation plays key roles in many biological processes, but the repertoire of O-glycans synthesized by cells is difficult to determine. Here we describe a new approach termed Cellular O-Glycome Reporter/Amplification (CORA), a sensitive method to amplify and profile mucin-type O-glycans synthesized by living cells. Cells incubated with peracetylated benzyl-α-N-acetylgalactosamine (GalNAc-α-Benzyl) convert it to a large variety of modified O-glycan derivatives that are secreted from cells, allowing easy purification for analysis by HPLC and mass spectrometry (MS). CORA results in ~100–1000-fold increase in sensitivity over conventional O-glycan analyses and identifies a more complex repertoire of O-glycans in more than a dozen cell types from Homo sapiens and Mus musculus. Furthermore, CORA coupled with computational modeling allows predictions on the diversity of the human O-glycome and offers new opportunities to identify novel glycan biomarkers for human diseases.
Analysis of patients with severe congenital neutropenia (SCN) may shed light on the delicate balance of factors controlling differentiation, maintenance, and decay of neutrophils. We identify 9 distinct homozygous mutations in the gene encoding Jagunal homolog 1 (JAGN1) in 14 SCN patients. JAGN1-mutant granulocytes are characterized by ultrastructural defects, paucity of granules, aberrant N-glycosylation of multiple proteins, and increased apoptosis. JAGN1 participates in the secretory pathway and is required for granulocyte-colony stimulating factor receptor-mediated signaling. JAGN1 emerges as a factor necessary in differentiation and survival of neutrophils.
Leukocytes are coated with a layer of heterogeneous carbohydrates (glycans) that modulate immune function, in part by governing specific interactions with glycan-binding proteins (lectins). Although nearly all membrane proteins bear glycans, the identity and function of most of these sugars on leukocytes remain unexplored. Here, we characterize the N-glycan repertoire (N-glycome) of human tonsillar B cells. We observe that naive and memory B cells express an N-glycan repertoire conferring strong binding to the immunoregulatory lectin galectin-9 (Gal-9). Germinal center B cells, by contrast, show sharply diminished binding to Gal-9 due to upregulation of I-branched N-glycans, catalyzed by the β1,6-N-acetylglucosaminyltransferase GCNT2. Functionally, we find that Gal-9 is autologously produced by naive B cells, binds CD45, suppresses calcium signaling via a Lyn-CD22-SHP-1 dependent mechanism, and blunts B cell activation. Thus, our findings suggest Gal-9 intrinsically regulates B cell activation and may differentially modulate BCR signaling at steady state and within germinal centers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.