Despite the fundamental roles of sialyl- and fucosyltransferases in mammalian physiology, there are few pharmacological tools to manipulate their function in a cellular setting. Although fluorinated analogs of the donor substrates are well-established transition state inhibitors of these enzymes, they are not membrane permeable. By exploiting promiscuous monosaccharide salvage pathways, we show that fluorinated analogs of sialic acid and fucose can be taken up and metabolized to the desired donor substrate-based inhibitors inside the cell. Due to the existence of metabolic feedback loops, they also act to prevent the de novo synthesis of the natural substrates, resulting in a global, family-wide shutdown of sialyl- and/or fucosyltransferases and remodeling of cell surface glycans. As an example of the functional consequences, the inhibitors drastically reduce expression of the sialylated and fucosylated ligand Sialyl Lewis X on myeloid cells, resulting in loss of binding to selectins and impaired leukocyte rolling.
Increased ligand binding to cellular integrins (“activation”) plays important roles in processes such as development, cell migration, extracellular matrix assembly, tumor metastasis and hemostasis and thrombosis[1-5]. Integrin activation encompasses both increased integrin monomer affinity and increased receptor clustering[6] and depends on integrin-talin interactions[5]. Loss of kindlins results in reduced activation of integrins[7-13]. Kindlins might promote talin binding to integrins through a cooperative mechanism[5, 14-16]; however, kindlins do not increase talin association with integrins[17]. Here we report that, unlike talin head domain (THD), kindlin-3 caused little effect on the affinity of purified monomeric αIIbβ3, and it didn’t enhance activation by THD. Furthermore, studies with ligands of varying valency showed that kindlins primarily increased cellular αIIbβ3 avidity rather than monomer affinity. In platelets or nucleated cells, loss of kindlins markedly reduced αIIbβ3 binding to multivalent but not monovalent ligands. Finally, silencing of kindlins reduced the clustering of ligand-occupied αIIbβ3 as revealed by total internal reflection fluorescence (TIRF) and electron microscopy. Thus, in contrast to talins, kindlins have little primary effect on integrin αIIbβ3 affinity for monovalent ligands and increase multivalent ligand binding by promoting the clustering of talin-activated integrins.
Lymphocyte function-associated antigen-1 (LFA-1) is a heterodimeric integrin consisting of αL (gene name, Itgal) and β2 (gene name, Itgb2) subunits expressed in all leukocytes. LFA-1 is essential for neutrophil recruitment to inflamed tissue. Activation of LFA-1 by chemokines allows neutrophils and other leukocytes to undergo arrest, resulting in firm adhesion on endothelia expressing intercellular adhesion molecules (ICAMs). In mice, CXCR2 is the primary chemokine receptor involved in triggering neutrophil arrest, and it does so through “inside-out” activation of LFA-1. CXCR2 signaling induces changes in LFA-1 conformation that are coupled to affinity upregulation of the ligand-binding headpiece (extended with open I domain). Unlike naïve lymphocytes, engagement of P-selectin glycoprotein ligand-1 (PSGL-1) on neutrophils stimulates a slow rolling behavior that is mediated by LFA-1 in a distinct activation state (extended with closed I domain). How inside-out signaling cascades regulate the structure and function of LFA-1 is being studied using flow chambers, intravital microscopy, and flow cytometry for ligand and reporter antibody binding. Here, we review how LFA-1 activation is regulated by cellular signaling and ligand binding. Two FERM domain-containing proteins, talin-1 and Kindlin-3, are critical integrin co-activators and have distinct roles in the induction of LFA-1 conformational rearrangements. This review integrates these new results into existing models of LFA-1 activation.
CD177 is a glycosylphosphatidylinositol (GPI)-anchored protein expressed by a variable proportion of human neutrophils that mediates surface expression of the antineutrophil cytoplasmic antibody antigen proteinase 3. CD177 associates with β2 integrins and recognizes platelet endothelial cell adhesion molecule 1 (PECAM-1), suggesting a role in neutrophil migration. However, CD177 neutrophils exhibit no clear migratory advantage in vivo, despite interruption of in vitro transendothelial migration by CD177 ligation. We sought to understand this paradox. Using a PECAM-1-independent transwell system, we found that CD177 and CD177 neutrophils migrated comparably. CD177 ligation selectively impaired migration of CD177 neutrophils, an effect mediated through immobilization and cellular spreading on the transwell membrane. Correspondingly, CD177 ligation enhanced its interaction with β2 integrins, as revealed by fluorescence lifetime imaging microscopy, leading to integrin-mediated phosphorylation of Src and extracellular signal-regulated kinase (ERK). CD177-driven cell activation enhanced surface β2 integrin expression and affinity, impaired internalization of integrin attachments, and resulted in ERK-mediated attenuation of chemokine signaling. We conclude that CD177 signals in a β2 integrin-dependent manner to orchestrate a set of activation-mediated mechanisms that impair human neutrophil migration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.