Video databases that enable queries with object-track predicates are useful in many applications. Such queries include selecting objects that move from one region of the camera frame to another (e.g., finding cars that turn right through a junction) and selecting objects with certain speeds (e.g., finding animals that stop to drink water from a lake). Processing such predicates efficiently is challenging because they involve the movement of an object over several video frames. We propose a novel query-driven tracking approach that integrates query processing with object tracking to efficiently process object track queries and address the computational complexity of object detection methods. By processing video at low framerates when possible, but increasing the framerate when needed to ensure high-accuracy on a query, our approach substantially speeds up query execution. We have implemented query-driven tracking in MIRIS, a video query processor, and compare MIRIS against four baselines on a diverse dataset consisting of five sources of video and nine distinct queries. We find that, at the same accuracy, MIRIS accelerates video query processing by 9x on average over the IOU tracker, an overlap-based tracking-by-detection method used in existing video database systems.
Abstract-Carbon nanotube field-effect transistors (CNFETs) are promising candidates for building energy-efficient digital systems at highly scaled technology nodes. However, carbon nanotubes (CNTs) are inherently subject to variations that reduce circuit yield, increase susceptibility to noise, and severely degrade their anticipated energy and speed benefits. Joint exploration and optimization of CNT processing options and CNFET circuit design are required to overcome this outstanding challenge. Unfortunately, existing approaches for such exploration and optimization are computationally expensive, and mostly rely on trial-and-error-based ad hoc techniques. In this paper, we present a framework that quickly evaluates the impact of CNT variations on circuit delay and noise margin, and systematically explores the large space of CNT processing options to derive optimized CNT processing and CNFET circuit design guidelines. We demonstrate that our framework: 1) runs over 100× faster than existing approaches and 2) accurately identifies the most important CNT processing parameters, together with CNFET circuit design parameters (e.g., for CNFET sizing and standard cell layouts), to minimize the impact of CNT variations on CNFET circuit speed with ≤5% energy cost, while simultaneously meeting circuit-level noise margin and yield constraints.
This paper studies the problem of allocating tasks from different customers to vehicles in mobility platforms, which are used for applications like food and package delivery, ridesharing, and mobile sensing. A mobility platform should allocate tasks to vehicles and schedule them in order to optimize both throughput and fairness across customers. However, existing approaches to scheduling tasks in mobility platforms ignore fairness.We introduce Mobius, a system that uses guided optimization to achieve both high throughput and fairness across customers. Mobius supports spatiotemporally diverse and dynamic customer demands. It provides a principled method to navigate inherent tradeoffs between fairness and throughput caused by shared mobility. Our evaluation demonstrates these properties, along with the versatility and scalability of Mobius, using traces gathered from ridesharing and aerial sensing applications. Our ridesharing case study shows that Mobius can schedule more than 16,000 tasks across 40 customers and 200 vehicles in an online manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.